

DOE Office of Electricity TRAC

Peer Review

PROJECT SUMMARY

MASTERRI

Merging power flow simulations, probabilistic risk assessment, and resilience metrics

PRINCIPAL INVESTIGATORS

Dr. Bjorn Vaagensmith, Power Systems Researcher, INL Shawn West, Senior Power Systems Researcher, INL

WEBSITE www.INL.gov

The Numbers

DOE PROGRAM OFFICE:

OE – Transformer Resilience and Advanced Components (TRAC)

FUNDING OPPORTUNITY:

XXX

LOCATION:

Idaho Falls, Idaho

PROJECT TERM:

01/20/2020 to 09/30/2021

PROJECT STATUS:

Completed

AWARD AMOUNT (DOE CONTRIBUTION):

\$500,000

AWARDEE CONTRIBUTION (COST SHARE):

\$XXX,000

Primary Innovation

- Combining power flow simulations with probabilistic risk assessment
 - quantify event severity and likelihood of occurrence

Impact/Commercialization

Impact

- Identified issues on the power grid and their likelihood of occurrence
 - Results validated by utility power engineers
- Aids engineers in deciding what system upgrades are most impactful or the best reconfiguration to avoid negative consequences
- Aids engineers in communicating to non-engineering management.

IP STATUS/Commercialization

Patent App. PCT/US19/4253

Innovation Update

- Adaptive capacity resilience metrics did not provide clear actionable results
 - Grouped components by bus resulted in little to no changes in adaptive capacity
 - New grouping mechanisms or new metrics are needed
- Technology commercialization funding was awarded
 - Develop MASTERRI into an easy-to-use software application
- Working with cyber capital partners to help with customer discovery to gauge commercialization potential

Component likelihood of violation contribution

Name	F-V Point	% of Top	Description
	Est.	Event	
Line 1	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 6	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 1000000	2.06E-01		AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 1.5	1.27E-01	61.65%	##.## MILE 230 KV LINE
Line 4	1.27E-01	61.65%	##.## MILE 230 KV LINE
Line 23	9.08E-02	44.08%	##.## MILE 230 KV LINE
Line 25	9.08E-02	44.08%	##.## MILE 230 KV LINE
Line 26	8.08E-02	39.22%	AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 27	6.88E-02	33.40%	AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 28	6.88E-02	33.40%	AVERAGE LENGTH 200-499 KV LINE, 19.01 MI
Line 29	4.04E-02	19.61%	##.## MILE 230 KV LINE
Line 30	4.04E-02	19.61%	##.## MILE 230 KV LINE
Line 31	1.36E-02	6.60%	8.44 MILE 230 KV LINE
Line 32	1.36E-02	6.60%	8.44 MILE 230 KV LINE
Transformer 1	1.91E-04	0.09%	TRANSFORMER XXXX FAILURE

Ranks components in terms of likelihood (Fussell Vesely) to contribute to a system violation

Component combination violation likelihood

#	Prob/Freq	Total %	Cut Set
Total	XXXXXX	100	Displaying ###### Cut Sets.
1	1.06E-07	0.76	Line 56, Line 42
2	6.38E-08	0.46	Line 32, Line 52
3	6.38E-08	0.46	Line 45, Line 41
4	5.56E-08	0.4	Line 6, Line 2
5	5.38E-08	0.38	Line 5, Line 4
6	5.38E-08	0.38	Line 5, Line 42
7	5.38E-08	0.38	Line 6, Line 4
8	5.38E-08	0.38	Line 6, Line 42
9	5.38E-08	0.38	Line 156, Line 242
10	5.38E-08	0.38	Line 56, Line 422
11	5.38E-08	0.38	Line 566, Line 42
12	5.38E-08	0.38	Line 546, Line 442
13	5.38E-08	0.38	Line 563, transformer 42
14	5.38E-08	0.38	Line 526, Line 2
15	5.38E-08	0.38	Line 56, Line 3

Ranks component combination failures in terms of likelihood that are most likely to result in a system violation

Probability of occurrences contingency ranking

TABLE INFORMATION: MASTERRI can rank

- Contingency scenarios
 - Under different grid configurations
- Contingency scenario pairs
- Compute the overall likelihood the system will experience a violation

Summary

MASTERRI provides the likelihood and impact of power grid violations

- Components most likely to contribute to a system violations
- Component combinations most likely to contribute to a system violation
- Contingencies most likely to contribute to a system violation
- Overall likelihood the system will experience a violation

Future work

- Advance data visualization methods
- Frequency consequence curves
- Reevaluate resilience metrics
- Dynamic analysis

Acronyms

MASTERRI:

 Modeling And Simulation for Targeted Reliability and Resilience Improvement

F-V

Fussell Vesely

THANK YOU

