Intelligent Power Stage (IPS)

PRINCIPAL INVESTIGATORS
Dr. Rolando Burgos, Professor, CPES Director
Dr. Dong Dong, Assistant Professor
Dr. Dushan Boroyevich, Distinguished Professor

Center for Power Electronics Systems (CPES), Virginia Tech
Goal: Development of intelligent power stage (IPS) three-phase ac-to-dc power converter module with advanced power processing, monitoring, and diagnostic capabilities based on high efficiency Silicon-Carbide power semiconductor devices.

Background:
- Future grid-specific power electronics remains hindered by the strong industrial reliance on custom-design power converters
- Modular, IPS-based solutions seek to unleash the development of grid power electronics enabling their flexible, scalable integration featuring advanced power processing, monitoring and diagnostics capabilities.
Innovations

- **Topology:** 2-level ac-dc converter with split dc-bus and cascaded 3-level buck-boost dc-dc converter
- **Ancillary Circuitry:** fiberoptic communication network (25 Mbps) between controller, gate-drivers (GD) and sensors; auxiliary power network with high dv/dt immunity (>100 V/ns); minimized EMI susceptibility
- **Monitoring and diagnostics:** GD-integrated SiC MOSFET Rdson, Tj measurement and dc-bus voltage; dc-bus capacitance measurement based on I_d and off-state V_{ds} measurements
SUPER to IPS Communication Tests (UART 6.25 Mbps)

Bit width ~160 ns (~6.25 MHz)

Latency between RX and TX – 57 ns

5-byte packet – 7.84 µs

6-bytes packet – 9.45 µs
IPS Internal Communication Protocol

- Based on 10BASE-T ethernet standard
- Physical layer: Plastic Optical Fiber
- Data rate: 25 Mbps
- Packet structure: inspired by MODBUS

Data Packet Structure

<table>
<thead>
<tr>
<th>Part</th>
<th>Length - Subpacket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Payload</td>
<td>4 bytes – SYNC</td>
</tr>
<tr>
<td></td>
<td>4 bytes - CTRL</td>
</tr>
<tr>
<td>CRC32</td>
<td>4 bytes</td>
</tr>
</tbody>
</table>

Difference between Custom protocol and 10BASE-T

<table>
<thead>
<tr>
<th></th>
<th>10BASE-T</th>
<th>Custom protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>10 Mbps</td>
<td>25 Mbps</td>
</tr>
<tr>
<td>Preamble + SOF</td>
<td>7+1 octets (64 bit)</td>
<td>3+1 octets (32 bit)</td>
</tr>
<tr>
<td>Payload/Packet</td>
<td>64–1,552 octets (variable size)</td>
<td>12 octets (96 bit, fixed size)</td>
</tr>
<tr>
<td>Frame check sequence</td>
<td>32-bit CRC</td>
<td>32-bit CRC</td>
</tr>
<tr>
<td>Encoding/Decoding</td>
<td>Manchester</td>
<td>Manchester</td>
</tr>
</tbody>
</table>

SYNC/CTRL related block

<table>
<thead>
<tr>
<th>Value</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>8 bits</td>
</tr>
<tr>
<td>Data</td>
<td>24 bits</td>
</tr>
</tbody>
</table>
Sub-Nanosecond Synchronization Capability

- < 1 ns synchronization jitter achieved with physically distributed clock
- Timers in GD and Controller are synchronized using PTP (IEEE 1588)

Benchmark System
Enhanced Immunity to SiC-Generated EMI

Challenge
- Fast switching frequency and \(dv/dt\) rates of SiC devices heighten EMI emissions disrupting communications

Solution
- Switching-proof communication protocol
- Data packets are synchronized and not transmitted during turn-on and turn-off SiC MOSFET switching events
Enhanced Gate-Driver for SiC MOSFET Module

- Drives half-bridge 1.2 kV SiC MOSFET module
- Modular, triple board design:
 - Digital, analog, and interface boards
- Double MAX10 FPGA controllers
- Integrated sensors
 - Top and bottom I_d, V_{dson}, V_{dsoff}, substrate temperature
- Communication protocol used for PWM, control, status, and transmission of measured data back to controller
- Dv/Dt immunity: 100 V/ns
Gate-Driven-Integrated I_d and $V_{ds\text{on}}$ Sensors

- I_d sensors enable phase-current reconstruction
- $V_{ds\text{on}}$ and I_d sensors enable T_j estimation
Digitally-Interfaced Sensing Network

• Four-board, modular sensor design
 ➢ Digital board, signal conditioning, power supply, and sensor interface boards
• MAX10 FPGA controller
• Sensor interface boards:
 ➢ Voltage, current and temperature
• Communication protocol: IPS internal protocol based on 10Base-T
• Sampling rate: 2 Msps
• Transmission rate: 200 ksp
PCB-Winding Coupled Buck-Boost DC Inductor

- Low-profile design (3.5 kVA/in³)
- Simple assembly with commercial AMCC core
- Heavy copper PCB (15 oz Cu, 50 kW, 90 A dc)
- Double PCB winding design to reduce fringing effect
 - Continuous and discontinuous current modes

Current density FEA simulation

Two-board design (even distribution) One-board design

Hitachi AMCC Core

Winding 1 Winding 2

28 mm

98 mm

86 mm
PCB-Winding Three-Phase Boost Inductors

- Low-profile design (2 kVA/in³)
- Simple assembly with commercial AMCC core
- Heavy copper PCB (12 oz Cu, 75 kVA, 90 Arms)
- Integrated in IPS to mitigate circulating current
Thermal Performance of PCB-Winding Magnetics

- Dc coupled inductor and ac three-phase boost inductor
 - Analytic and FEA simulations validated experimentally
 - Maximum temperature limited to 60 °C

![Graph showing temperature vs. power with a maximum of 60°C at 60 Arms (50 kVA)]

![FEA simulation, side view, and cross section images with a color scale indicating temperature from 30 to 70 °C]
IPS Nominal Power Testing

- Nominal power rating test (75 kVA)
- Zero-voltage-switching for all dc-dc stage semiconductors
- Quadrangular current control scheme
Milestones Update

- **BP1 Milestones**
 - M1.1 “IPS electrothermal design meets target specifications”
 - M1.2 “Gate-driver unit is built and functionally tested”
 - M1.3 “Auxiliary power supply are built meeting their specifications, and PCB-based dc-bus planar structures are built”
 - Go/No-Go “IPS power stage subcomponents are demonstrated”

- **BP2 Milestones**
 - M2.1 “Full power testing of IPS validated. Prototype P1 ready for testing at ORNL” [completion: 85 %]
 - M2.2 “Filters are built and ready for testing. Digital sensors (V, I, T) are built and ready for testing, and digital control system communication is tested” [completion: 95 %]
 - M2.3 and Go/No-Go due in July and September 2022
Risks Mitigation Strategy

• Supply chain challenges have led to widespread shortage of electronic components and longer component manufacturing timeframes leading to IPS development and construction delay
 ▪ All circuit designs were revised to replace key parts that were not available, and had lead times of months up to a year
 ▪ Scavenged components with suppliers around the world

• Acquisition of SiC MOSFETs was delayed 4 months due to contractual barriers between GE and Virginia Tech, which is bound by VA state law
Future Work

- Task 2.1 Integration and thermal testing of IPS-1
 - Hardware integration and testing of IPS-1 unit and EMC verification
- Task 2.2 Advanced functionality
 - Program Iphase, Rdson and Tj temperature estimation
 - Program dc-bus capacitance Cdc value estimation
- Task 2.3 Integration, thermal testing and qualification of IPS-2
 - Hardware integration of IPS-2 unit using enhanced gate-drivers
 - Testing and demonstration of Iphase, Rdson, Tj, and Cdc estimation
- Task 2.4 Advanced functionality update
 - Program Iphase, Rdson and Tj temperature estimation in IPS-1
 - Program dc-bus capacitance Cdc value estimation in IPS-1
 - Testing and demonstration of Iphase, Rdson, Tj, and Cdc estimation
IMPACT

• Modularity of IPS concept combined with automated-manufacturing-oriented design of proposed IPS will expectedly favor multi-supplier IPS market development attaining economy of scales benefits

• IPS internal digital control and communication network will demonstrate a viable alternative to operating in the harsh EMI environment generated by SiC power semiconductors (main collateral effect of this technology)

➢ This is critical for modular systems as the EMI generated is directly proportional to the number of modules used, in this case IPS units
PUBLICATIONS

• “A 50kW Planar PCB-based Heavy Copper Coupled Inductor for FSBB,” submitted to ECCE 2022.

IP STATUS — Invention disclosures in preparation
1. “Buck-boost dc-dc converter high-efficiency and low EMI emissions current control scheme”
2. “IPS control and sensing communication network with sub-nanosecond synchronization”
THANK YOU

This project was supported by the Department of Energy (DOE) - Office of Electricity's (OE), Transformer Resilience and Advanced Components (TRAC) program led by the program manager Andre Pereira & Oak Ridge National Laboratory (ORNL)
SiC: Silicon-Carbide, semiconductor material
MOSFET: metal-oxide field-effect transistor
GD: Gate-driver, i.e., electronic circuit that controls the turn-on and turn-off of SiC power transistors
PTP: Precision time protocol
Mbps: mega bits per second
Msps: mega samples per second
PCB: printed circuit board
EMI: electromagnetic interference