

# DOE Office of Electricity TRAC

Peer Review



### **PROJECT SUMMARY**

# High Temperature Capacitor Development

This project focuses on the development of material and component-level knowledge of ceramic capacitors for DC-Link for high performance power electronics, including development of new high temperature and lifetime dielectrics and understanding device-level and DC-Link level characterization and modeling of Ceralink capacitors.

### PRINCIPAL INVESTIGATORS

Dr. Jonathan Bock, Materials R&D

Dr. Sean Bishop, Materials R&D

Dr. Jacob Mueller, Power Electronics R&D

WEBSITE www.Sandia.gov



Exemptional Service in the National Interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

### The Numbers

DOE PROGRAM OFFICE:

OE – Transformer Resilience and Advanced Components (TRAC)

**FUNDING OPPORTUNITY:** 

LOCATION:

Albuquerque, NM

PROJECT TERM:

10/01/2019 to 10/01/2022

**PROJECT STATUS:** 

Incomplete

AWARD AMOUNT (DOE CONTRIBUTION):

\$1,000,000

AWARDEE CONTRIBUTION (COST SHARE):

\$0

### Power Electronics At Sandia National Labs

Our DC-Link Capacitor Development Program focuses on moving from materials up to application.

**TRAC Task 2**— Ceralink Capacitor Characterization, from individual piece-parts to full DC-Links

**TRAC Task 1** - Development of Candidate Dielectrics for Next-Gen MLCC's (BZT-BT: Bi(Zn,Ti)O<sub>3</sub>-BaTiO<sub>3</sub>)



# Primary Innovation – Task 1

 A candidate dielectric material for high volumetric efficiency DC-Link capacitor dielectrics, Bi(Zn,Ti)O<sub>3</sub>-BaTiO<sub>3</sub>, shows promising initial degradation mechanics. Our data suggest high-lifetime devices may be obtainable, but concern exists in reducing environments necessary for a low-cost product.

# Innovation Update

### Bi(Zn,Ti)O<sub>3</sub>-BaTiO<sub>3</sub> Dielectrics – "X7R" Modified for High Temperature and High Field Performance



- Retains capacitance at high E-field/High applied voltages
- Can be designed w/ low loss at high temp (regulate Self-heating)
- All benefits of MLCC's: Low ESR/ESL, little/no practical dV/dT limit



#### DC field for long time at high temperature

Modified from R. Maier, Penn. State PhD Thesis (2014)



Modified from D. Liu. IEEE Trans. On Comp., Pack., and Manf., 5 (1), pg 40 (2015)

### **Measuring Electromigration**

Thermally Stimulated Depolarization Currents



### **Measuring Degradation**

Highly Accelerated Lifetime Tests



Oven with Sample Inside



High resistances and low degradation are found, but only after air annealing. The material may be significantly reduceable – a concern for low-cost production

# Impact/Commercialization

- This work shows that BZT-BT can show promising high resistance and low degradation behavior needed for high temperature capacitors
- Observed ease of reduction for this material adds to the challenges of commercialization of low-cost product:
  - Reducing environments needed for processing MLCC's w/ Ni or Cu electrodes
  - BZT-BT shows potentially high reducibility and (from other work) low thermodynamic stability in these environments.
- As more evidence points toward increasing barriers for commercialization, the dielectrics community must reflect on the path forward...

### IP STATUS

No IP is expected from this work.

### Materials Path Forward For FY22

### Finish Electromigration and Degradation Experiments for 2 Journal Publications

- Impact of thermal annealing
  - Focuses on Bi-Rich samples (Donor doped)
  - Finalize TSDC work, activation energy of electromigration, degradation statistics.
- Impact of chemistry (Acceptor/Donor Doping)
  - Comparison to Ba-Def (Acceptor doped) samples

### Stretch: Utilize Tools for component-level work

• TSDC and In-situ Impedance-Spec techniques, developed for this work, will be fantastic tools for understanding physics of failure and lifetime predictions in commercial CaZrO<sub>3</sub> (KC-Link) and Na:PLZT (Ceralink) capacitors.

### Power Electronics At Sandia National Labs

Our DC-Link Capacitor Development Program focuses on moving from materials up to application.

**TRAC Task 2**— Ceralink Capacitor Characterization, from individual piece-parts to full DC-Links

**TRAC Task 1** - Development of Candidate Dielectrics for Next-Gen MLCC's (BZT-BT: Bi(Zn,Ti)O<sub>3</sub>-BaTiO<sub>3</sub>)



FY20-22

# Primary Innovation – Task 2

Device-level characterization of Ceralink capacitors, measured in this
program, suggest favorable performance for DC-Link applications; however,
their complex behavior may create difficulties in modeling DC-Link behavior.
Accurate and accessible design tools are needed maximize the impact of
these converters in practical power conversion applications.

# Innovation Update

Piece-part Characterization of Ceralink Capacitors (TDK B58031I5105M062, 1uF/500V)

#### **Characterization Experiments**

- Apply AC current excitation for 30 minutes with controlled DC bias and ambient temperature
- Measure device temperatures, voltages, currents
- Calculate effective capacitance, ESR, dissipation factor, loss

#### Range of Operating Conditions

- Sinusoidal current excitation at 3A<sub>RMS</sub>/cap
- AC excitation frequency 80kHz, 120kHz, 160kHz, 200kHz
- DC voltage bias 0V, 300V, 400V, 500V
- Ambient temperature 25C, 55C, 85C











Individual device characterization looks favorable for DC Link applications: High ripple current capability, Stable capacitance w/ DC Bias, Low loss at high temperature.

# Innovation Update



In capacitors,  $|Z| = 1/(2\pi fC)$ , so operating regions in which *capacitance decreases with temperature are advantageous* for performance and reliability.



- C vs T relationship is critical for DC link applications
- Balanced distribution of current stress between parallel capacitor elements in the DC-Link is important to prevent thermal runaway.
- If impedance increases with temperature, the hottest element receives the least current, creating a negative feedback loop that should work against thermal runaway.

### Ceralink Path Forward FY22

- Goal: Understand device and subsystem performance in a practical power conversion application, including parasitic impedances and temperature-dependent behaviors.
- Characterization data are gathered in a hardware platform designed to match target applications for Ceralink caps, i.e. wide bandgapenabled power converters
- Custom converter platform provides high flexibility in DC link circuit composition, ability to control parasitic impedances between parallel cap branches
- Data gathered from converter platform will be used to develop models that accurately describe device operation within the DC-link system
- Intent is to generate accessible models and design tools power electronics engineers

#### **Stress Ceralinks in Actual Converters**



### **Model Ceralink DC-Links:**

### **Device Model Validation and Parasitic Adjustments**



# Impact/Commercialization

- Characterization of capacitor behavior within a DC link as a function of system structure and operating conditions helps build an understanding of devices' potential for performance improvement and suitability for key power conversion applications
- Accessible models and design methodologies accelerate the adoption of advanced capacitor technologies by reducing engineering effort and risk involved in new power conversion system designs

### IP STATUS

No IP is expected from this work.

# Summary

- A candidate dielectric material for high volumetric efficiency DC-Link capacitor dielectrics, Bi(Zn,Ti)O<sub>3</sub>-BaTiO<sub>3</sub>, shows promising initial degradation mechanics. Our data suggest high-lifetime devices may be obtainable, but concern exists in reducing environments necessary for a low-cost product.
- Device-level characterization of Ceralink capacitors, measured in this program, suggest favorable performance for DC-Link applications; however, their complex behavior may create difficulties in modeling DC-Link behavior.
- Future work will focus on publishing annealing and chemistry impacts in BZT-BT work while simultaneously pivoting to Ceralink-focused work utilizing power electronics staff and degradation investigation tools for BZT-BT.

# THANK YOU

