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Electricity Consumption by Plug-in Electric
Vehicle (PEVs) is Projected to Grow
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Study Objectives

To provide engineering
counterparts in the PEV and
electric vehicle supply
equipment industry with
insights into the types of PEV
charging behaviors that are grid
friendly or grid unfriendly
during transmission faults

To show the range of grid
friendly and grid unfriendly
behaviors that currently exist in
a selection of PEVs that are in
production today
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Study Approach

Residential AC stalling (FIDVR) is a
known example of a grid unfriendly
load (http://fidvr.Ibl.gov)

This Study examines the impacts of
PEV charging on FIDVR
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Study Method

Voltage
The impacts of transmission faults on voltages ((gﬂ
within the distribution feeder are studied using
GridLAB-D GridLAB- H Caldera
The behavior of single-phase induction motors is " Powerflow lﬂ S HELICS J |- Detailed EV
represented in GridLAB-D using a dynamic-phasor- - Fault Tuput. — o
based model
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The impacts of step changes in distribution
voltages on PEV charging are studied using

Caldera y
R e e
ry
Caldera is a model with 4 states and 3 transitions. C State

Parameters were estimated through lab testing of
commercially available PEVs (circa 2015 vintage)
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Co-simulation of GridLAB-D and Caldera is

managed through the HELICS platform
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Baseline FIDVR Results — No PEVs

Ara nge of transmission faults are Rech(:I)gntiaI Air Conditipner Op‘erating ?tates —‘9-cycle yoltage dlf tlo 0.50 pu
ault
“played into” GridLAB-D —Running

—Stalled

300

The number of residential AC units
that stall are tabulated (there are a
total of 331 residential AC units on
this phase of the feeder)
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These values represent the
baseline against which PEV impacts
will be compared
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Residential Air Conditioner Operating States — 12-cycle voltage dip to 0.50 pu

Depth of Duration of Voltage Dip o | -~ Fault
Voltage ounnie
Dip 5 cycles | 7 cycles | 9 cycles |12 cycles
0.55 0 0 0 272 300
0.5 0 0 199 331
0.45 0 0 331 331

Motor Count
V)
[
(e

Note: In our simulations, all residential |,
AC units re-accelerate eventually;

none remain stalled and trip off due to | | | | |
internal thermal protection 4 43 > 33 6 6.3 7 73 8




Baseline Results — No PEVs
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Residential AC Motor Speeds — 9-cycle voltage dip to 0.50 pu
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Voltages at Selected Locations — 9-cycle voltage dip to 0.50 pu
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The number of residential AC
units that stall initially, re-
accelerate, or remain stalled

depends on the voltage they see,

which varies by location within
the distribution feeder
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Impact of PEVs on FIDVR

We now add a single type of ~ Zao ~ oo |
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PEV to every household within £ =io )
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Effect of PEVs on Initial Number of AC Units
that Stall during a Fault

. Initial Number of Units Stalled
Fault Scenario . .
(increase/decrease from baseline)
# Depth (Duration| EV-A EV-B EV-C EV-D EV-E EV-F
~ N
1 0.55 5 0 0 0 0 0 0
2 0.55 7 100 0 72 0 0 0
3 0.55 9 330 0 320 167 309 0
4 0.55 12 59 -232 59 59 59 -38
5 0.5 5 0 0 0 0 0 0
6 0.5 7 309 0 309 35 260 0
7 0.5 9 132 -199 132 132 132 -199
8 0.5 12 0 0 0 0 0 0
9 0.45 5 0 0 0 0 0 0
10 0.45 7 302 -29 302 280 302 -29
11 0.45 9 0 0 0 0 0 0
12 0.45 12 0 0 0 0 0 0
\ 4 \J \v4
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EV-B is a Grid Friendly PEV during Faults

Residential AC Motor Speeds No PEV — 9-cycle voltage dip to 0.50 pu

EV-B is grid friendly because it

wl S ceases consuming current at the
Ll onset of the fault
T
B By taking PEV load off the
g2 S distribution feeder, residential AC

units are able to re-accelerate

0 more quickly
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EV-A is a Grid Unfriendly PEV during Faults

. . . . Residential AC Motor Operating States No PEV —
EV-A is grid unfriendly because it 9-cvele voltage dip to 0.50 pu
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Effect of PEVs on Number of AC Units that
Remain Stalled 2 seconds after Fault has Cleared

Number of Units Stalled at T, ,,+2.0s
Fault Scenario (increase/decrease from baseline)
# Depth |Duration EV-AA EV-B/\ EV-C EV-D/\ EV-E A EV-F A
1 0.55 5 0 0 0 [ o\ 0 0
2 0.55 7 o\ 0 0 | © \ 0 0
3 0.55 9 291 0 307 , 0 \ 300 0
4 0.55 12 291 0 307 0 303 0
5 0.5 5 0 0 0 0 0 0
6 0.5 7 272 0 295 0 256 0
7 0.5 9 291 0 307 0 300 0
8 0.5 12 291 0 305 0 300 0
9 0.45 5 0 0 0 0 0 0
10 0.45 7 297 0 301 ‘ 0 ’ 295 0
11 0.45 9 \_;,03 \ 0 / Em / \ q] ioo / \ 0
12 0.45 12 07 0 07 \ 0/ 00 0
VRV
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EV-D was a Grid Unfriendly PEV during the
Fault, but was Grid Friendly after the Fault

Residential AC Motor Operating States No PEV —
9-cvcle voltage dip to 0.50 pu

EV-D was grid unfriendly because it did

not cease consuming current at through 400 —
the duration of the fault Saed
EV-D became grid friendly because it E
ceased consuming current after the fault 2200’
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Grid Friendly and Grid Unfriendly PEV Behaviors

Phase 1: Phase 2:
During a immediately after a
fault fault has cleared
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immediately _ | | | \«w\ PEVs that delay
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current — for at least a couple
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~ immediately
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Next Steps

Present and discuss findings with engineering counterparts in the PEV and
electric vehicle supply equipment industry

Explore opportunities to develop standards (IEEE and SAE) that establish
technical performance requirements and testing protocols for
electronically-coupled end-use loads connected to the grid through power
electronic interfaces

Demonstrate the usefulness of study approaches such as these for
supporting enhancements to the composite load model to better capture
the diversity and growth in power electronic loads
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