

Novel Membranes and Ionomers

Michael A. Hickner Professor, Department of Materials Science and Engineering Department of Chemical Engineering and Department of Chemistry Associate Director – Materials Research Institute The Pennsylvania State University hickner@matse.psu.edu

H2-AMP Workshop, March 30-31, 2022

Acknowledgements

- Bryan Pivovar NREL
- Mike Yandrasits 3M (retired)
- Andrew Park Chemours
- Earl Wagener Tetramer
- Scott Mauger NREL
- Corky Mittelsteadt Plug Power
- Kathy Ayers Nel Hydrogen

Hickner Research Group @ Penn State

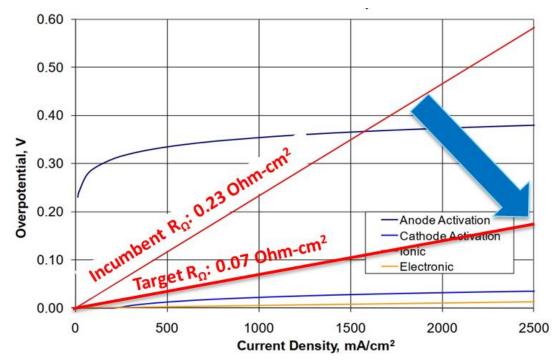
PEMs in Electrolyzers

- PFSA (perfluorosulfonic acid)
- Thick (100+ microns) generally unsupported
- Demonstrated in commercial systems with 20,000+ hour lifetimes
- Little fundamental (molecular) study around electrolyzer operation and degradation
- Can be a cost driver in the stack and a major source of IR loss
- Generally viewed as ripe for improvement in advanced membrane electrolysis systems

Most Proton Exchange Membrane Knowledge is Derived from Fuel Cells

- PFSA and non-PFSA alternatives have been examined in detail in the fuel cell context
- Very few examples of purposed-designed electrolyzer membranes
- We know membranes likely need to be supported
- We know there will have to be additives
- Difficult to come up with universal accelerated tests for lifetime
- There is a feeling that non-PFSA membranes may work, IF they can meet lifetime requirements

Membranes Ohmic Losses are the #1 Loss at High Current Density Operation in PEMWEs

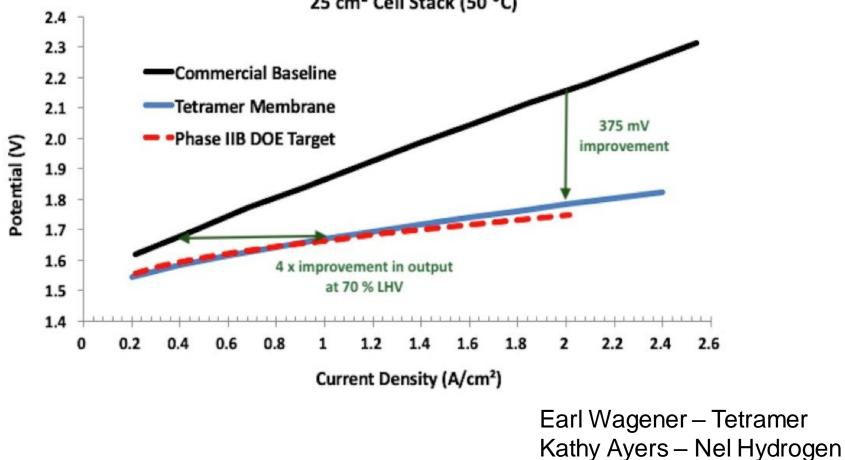

Characteristic	Units	2015 Status	2020 Targets
Maximum oxygen crossover ^a	mA / cm ²	2.4 ^b	2
Maximum hydrogen crossover ^a	mA / cm ²	1.1°	2
Area specific proton resistance at: Maximum operating temperature and water partial pressures from 40–80 kPa 80°C and water partial pressures from 25–45 kPa 30°C and water partial pressures up to 4 kPa -20°C	ohm cm ² ohm cm ² ohm cm ² ohm cm ²	0.072 (120°C, 40 kPa) ^c 0.027 (25 kPa) ^c 0.027 (4 kPa) ^c 0.1 ^b	0.02 0.02 0.03 0.2
Maximum operating temperature	°C	120 ^c	120
Minimum electrical resistance	ohm cm ²	>5,600 ^c	1,000
Cost ^d	\$ / m ²	17 ^e	20
Durability ^f Mechanical Chemical Combined chemical/mechanical	Cycles until >15 mA/cm ² H ₂ crossover ⁹ Hours until >15 mA/cm ² crossover or >20% loss in OCV Cycles until >15 mA/cm ² crossover or >20% loss in OCV	23,000 ^c 742 ^c -	20,000 >500 20,000

https://www.energy.gov/sites/default/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf

Bryan Pivovar - NREL

New PEMWE Membranes

- PEMWE devices are the most proven technology to drive the adoption of H2@Scale.
- Reducing areal resistance of membranes in PEMWE environments (increasing voltage efficiency) is a critical contributor to their envisioned cost reduction toward \$1/kg H₂.



- Additives will be required to enable thin membranes in a high differential pressure stack
- Understanding durability implications of gas recombination catalysts (GRCs) and radical scavengers will enable "moving on" from incumbent thick membranes in PEMWE.

Andrew Park - Chemours

Designing PEMWE Membranes

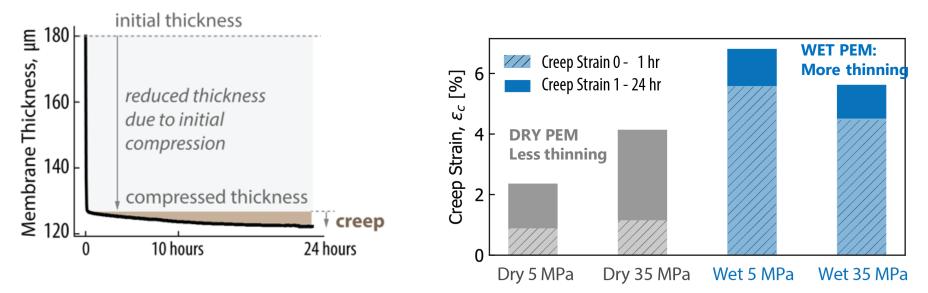
Can achieve low cell potentials with new membranes.

25 cm² Cell Stack (50 °C)

Thin PEMWE Membranes

- Have too high gas crossover under differential pressure
- Need to be mechanically supported
- Demonstrated in some cases with reasonable lifetimes (less than 10,000 hours)
- Need to consider gas crossover and other losses due to thin membranes – more consideration of the trade-offs
- Thin membranes can reduce cost
- High priority for next-generation PFSA-based PEMWE membranes

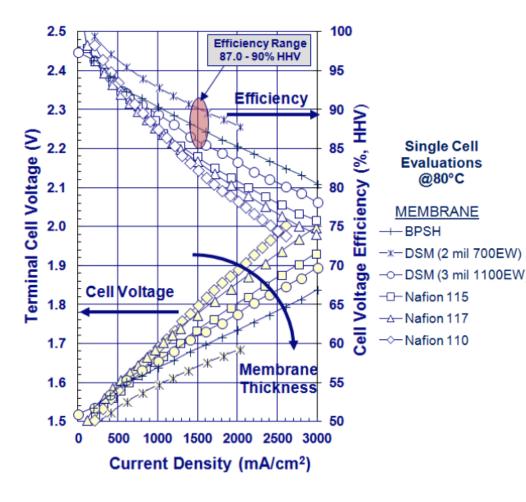
PFSA Membrane Creep

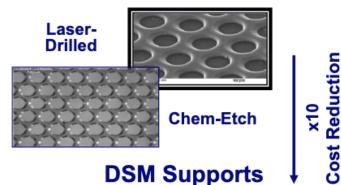

Both hydration and pressure impact the creep response Nafion creeps more in liquid water

An in-situ compression creep procedure for is demonstrated and applied to Nafion

Creep is evidenced over the course of days

Creep leads to thinning under compression


- 5 MPa (725 psi) & 35 MPa (5000 psi) for 24 hrs
- Hydrated Nafion creeps more (in water)
- It slows down after the first hour
- Increasing compression reduces the subsequent creep strain, by restricting the polymer mobility



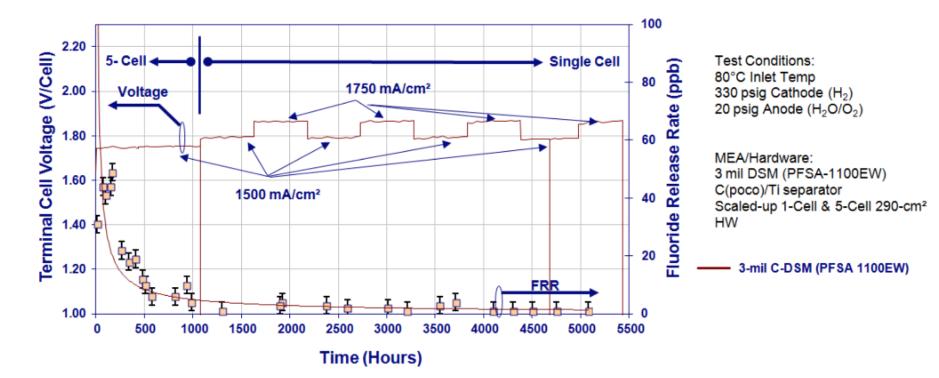
C. Arthurs and A. Kusoglu (2021). ACS Applied Energy Materials, 4, 4, 3249–3254.

Thin Supported Membranes

Membrane Progress: Membrane/Catalyst Evaluations

- Developed high efficiency DSM membranes
 - Chem-etched substrates used to lower cost, aid ease of fabrication

 Developed electrode structures with reduced catalyst loadings: 0.7 mg Pt/cm² (Pt/Ir-Anode), 0.4 mg Pt/cm² (Pt/carbon-Cathode)


Previously 8 mg Pt/cm²

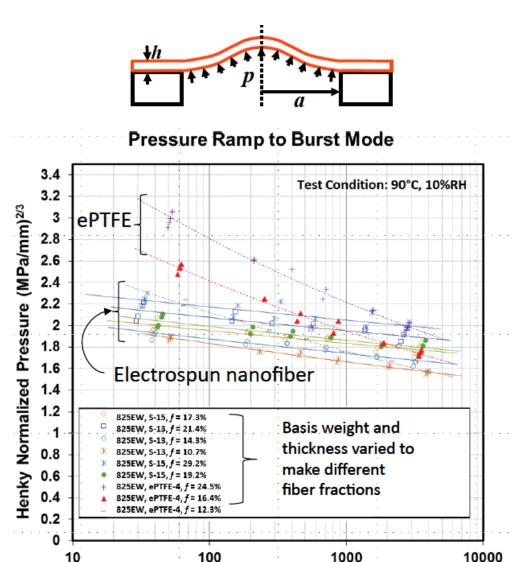
 Successful testing of 3M NSTF Pt (cathode) and PtIr (anode) catalyst: 3M catalysts are one-order magnitude lower (~0.10 to 0.15 mg Pt/cm² Anode/Cathode)

 Alternative BPSH hydrocarbon membranes exhibited high degradation rates but are effective in reducing cross-over

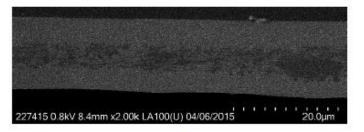
> Monjid Hamdan – Giner 2013 DOE Merit Review

Membrane Progress: Durability Testing (5,000 hours)

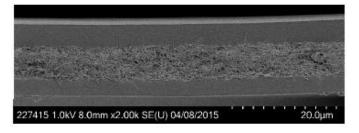
Performance


- Completed 1,000 & 5,000 Hour Life-Test Milestones
 - Scaled-up 5-cell (290-cm²)
 - 1.73-1.75V (~88% HHV)
- DSM MEA from 5-cell short stack re-assembled into a single-cell stack, total operating time = 5430 hours
- Scaled-up cells include low-cost components used in final stack assembly

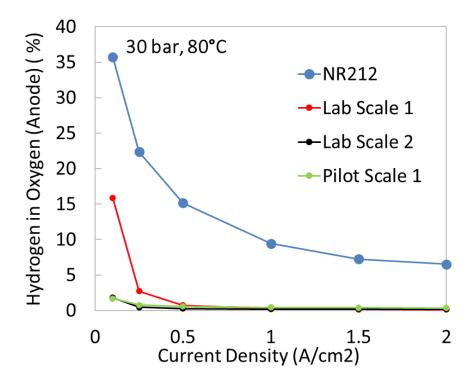
Membrane Degradation (Estimated Lifetime)


- F ion Release Rate: 3.7 μg/hr (<10 ppb)
- DSM -1100EW (Stabilized Ionomer): ~55,000 hours

Monjid Hamdan – Giner 2013 DOE Merit Review


Membrane Support Testing

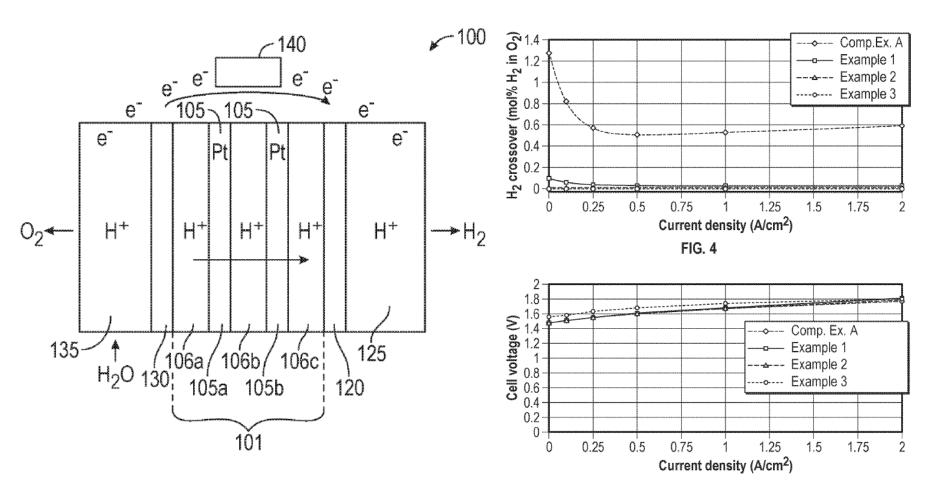
Time to Failure (sec)


Electrospun nanofiber supported membrane (~16.1% fiber vol fraction)

ePTFE supported membrane (~16.4% fiber vol fraction)

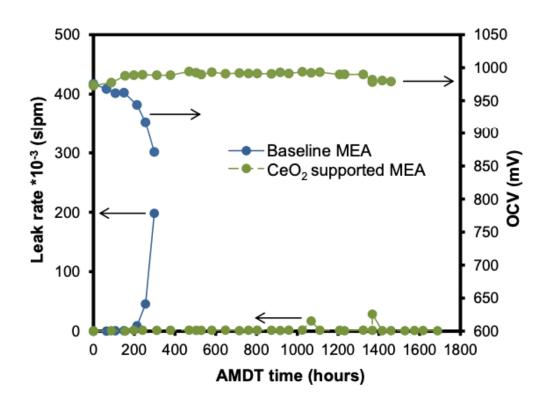
> Mike Yandrasits – 3M 2015 DOE Merit Review

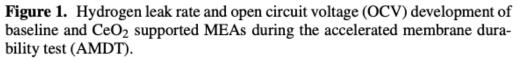
Gas Recombination Catalyst Additives


Active area: 50 cm ² , Cell temperature: 80 °C, Anode: 0.4					
mg/cm ² IrO ₂ , Cathode: 0.1 mg/cm ² Pt/HSC, partial					
pressures: ~0.8 bar (O ₂), 30 bar (H ₂),					

- PEM MEAs utilizing 50 μm membranes require hydrogen crossover mitigation
- Gas recombination catalysts (GRCs) in membrane are effective tools to mitigate hydrogen crossover
- At 80C and 30 bar p_{H2} (most extreme conditions yet tested), mitigated prototype membranes exhibit:
 - <20% LFL from 0.25 A/cm² to 2 A/cm² $\,$
 - <50% LFL from 0.1 A/cm² to 0.25 A/cm²
- Time effect on membrane performance under evaluation

Membrane	GRC Loading (mg/cm²)	H_2 in O_2 Content in Anode at 0.25 A/cm ² (%)
NR212	0	22.4
Lab Scale 1	<<0.1	2.7
Lab Scale 2	<<0.1	0.5
Pilot Scale 1	<<0.1	0.75


50 μm reinforced membrane with GRC demonstrates up to 50x reduction in effective H₂ crossover at 80C, 30 bar p_{H2} Andrew Park - Chemours


Multilayer PEMWE Membranes

3M US Patent Appl. US 2020/0102659 A1

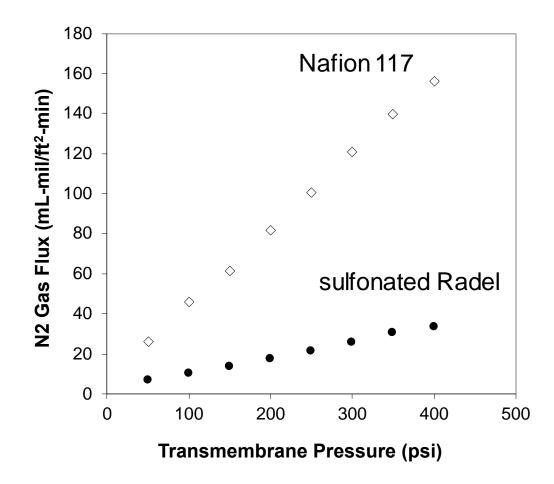
PEM Lifetime Additives

 $Ce^{3+} + HO' + H^+ \rightarrow Ce^{4+} + H_2O$

 $Ce^{4+} + H_2O_2 \rightarrow Ce^{3+} + HOO^{-} + H^+$

$$Ce^{4+} + HOO^{-} \rightarrow Ce^{3+} + O_2 + H^+$$

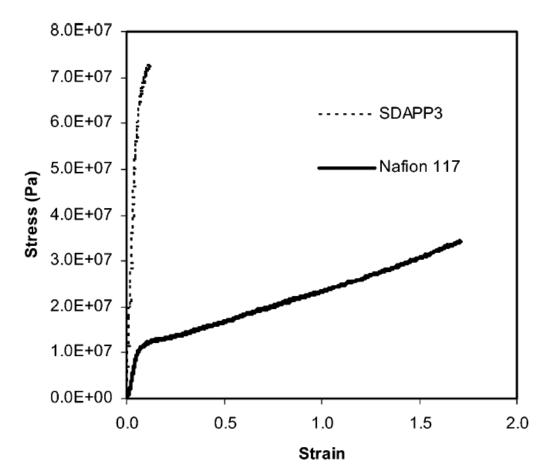
 CeO_2 addresses both HO• and HOO• radicals as well as H_2O_2 .


What are the key degradationcausing side products in PEMWEs? Need to investigate mechanisms and then design mitigation strategies.

J. Electrochem Soc., 165 (10) F780-F785 (2018)

Non-PFSA Alternatives

- Growing concerns around PFAS and manufacture/degradation of fluorinated polymers
- Have some proven attributes:
 - Low gas crossover
 - High modulus
 - Adjustable properties
- Very limited performance and lifetime data
- Little support and additive engineering work
 for new polymer structures


Non-PFSA Gas Crossover

Can decrease gas crossover 5-10x compared to PFSAs without much trouble.

> ARPA-E GRIDS w/Nel Hydrogen

Non-PFSA Mechanical Properties

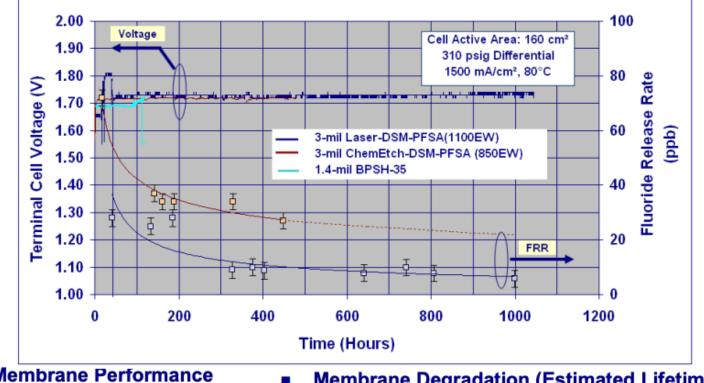
Higher modulus of aromatic membranes will lead to less creep.

However, membranes can be brittle and can fatigue crack during cycling.

Need strong (high modulus) and tough (high elongation) membranes.

Figure 7. Tensile stress-strain properties of SDAPP3 and Nafion 117 dry films.

Fujimoto, et al. Macromolecules 2005.


Non-PFSA Tunable Water Transport

There is a trade-off of conductivity, mechanical properties, gas crossover, and water transport that must be considered in non-PFSA PEMWE membranes.

	IEC (mmol g ⁻¹)	Water uptake (%)	Thickness (microns)	Water Permeability (g cm cm ⁻² psi ⁻¹ s ⁻¹) 10 ⁻¹⁰
S-Radel 1.0	1.05	7.45	62	0.13
S-Radel 1.6	1.59	21.8	76	0.61
S-Radel 2.0	1.95	26.5	95	2.1
S-Radel 2.5	2.54	69.6	121	15
NRE212	0.91	33	60	6.3

ARPA-E GRIDS w/Nel Hydrogen

Non-PFSA Membrane Lifetime

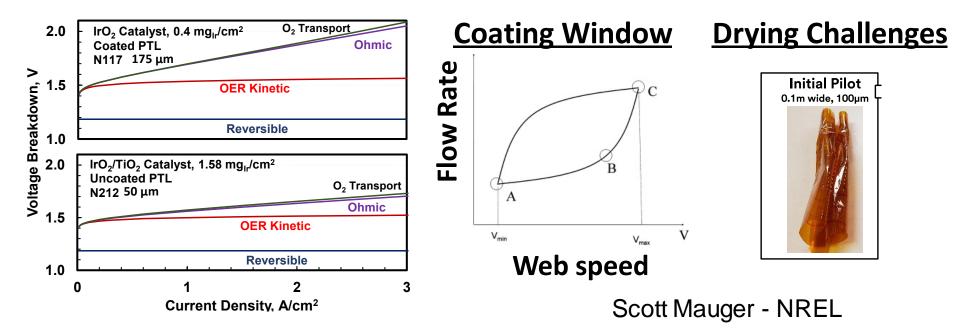
Membrane Performance (3-mil Laser Drilled DSM PFSA(1100EW)

Voltage:1.71-1.73V

Efficiency: 75.1% LHV (88.8% HHV)

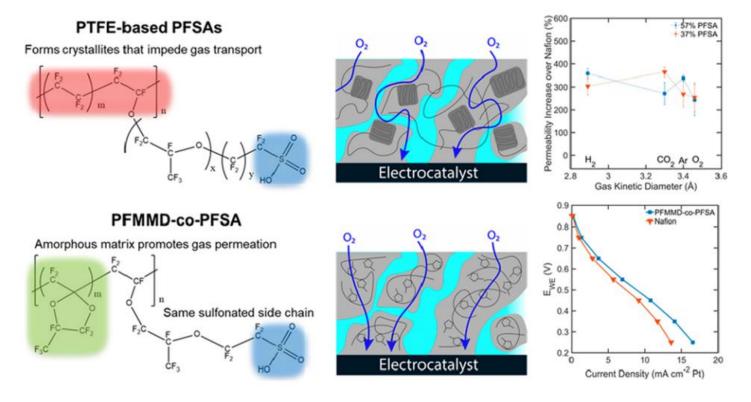
Completed 1000 Hour Life Milestone

Membrane Degradation (Estimated Lifetime)


- F ion Release Rate: 3.7 µg/hr (<10 ppb)
- DSM -1100EW Stabilized Ionomer: ~55,000 hours
 - DSM 850EW Non-Stabilized Ionomer: <20,000 hours
 - BPSH-35: Life test fail due to H₂X-over (pinhole detected)

Scarce information on non-PFSA durability, what does exist isn't promising.

Monjid Hamdan – Giner 2010 DOE Merit Review


Membrane Processing Challenges

- Development of new chemistries challenging without right equipment and requires kg-scale quantities
- Specialized equipment needed for fabrication of composite or multilayer membranes
- Meeting overpotential technical targets will likely require transition from extrusion (t > 100 μ m) to solution casting (t < 50 μ m)
- Polymer solubility and density ($\rho_{Naf} = 2 \frac{g}{cm^3}$) must be materials development considerations to enable manufacturing processes within operable limits (e.g. coating window, drying/oven lengths, solvent toxicity)

Ionomers for PEMWE Catalyst Layers

Likely need different properties from catalyst layer ionomers compared to membranes

Katzenberg, et al. JACS 2020.

Sustainability and Recycling

- Solvent processing is already a tremendous cost driver in the chemical industry
- Many electrochemical cell recycling projects discard the membrane/organics and focus on the inorganics
- How soon will PEMWE components be designed with recycling ease as a metric?
- Fluorinated polymer manufacturing may be targeted not just their use.

Conclusions

- New PFSA PEMWE membranes are likely on their way.
- Need to consider longer-term solutions, including costs and recycling/sustainability.
- Interesting non-PFSA membrane work to study trade-offs, but lifetime is a key question.
- It will be important to know what we can borrow from PEMFCs and what new knowledge needs to be gained for effective PEMWE membrane and ionomer design.