Building Soil Carbon Via Biomass Pyrolysis

Robert C. Brown
Director, Bioeconomy Institute
Bioenergy’s Role in Soil Carbon Storage Workshop
Virtual Meeting
March 28-29, 2022
Biochar: Faster and more efficient than building soil organic matter

Slow vs fast pyrolysis

Slow pyrolysis
- Lower capital costs
- Higher yields of biochar (20-40 wt%) vs fast pyrolysis (10-20 wt%)

Fast pyrolysis
- Higher throughputs
- Higher value co-products improve economics

Is biochar really the same thing as “soil carbon?”
- Biochar exhibits many of the same benefits to soil fertility as soil organic matter
- Biochar already makes up part of the natural complement of soil carbon, produced by forest and prairie fires

Biochar value depends upon market size

Adapted from Laird and Mba Wright
Concept for Fast Pyrolysis Biorefinery

Lignocellulosic Biomass → Pyrolysis Reactor → Product Recovery

First Generation Products
- Ethanol
- Bio-asphalt and marine fuel
- In-plant thermal energy
- Soil enrichment & sequestration of carbon

Potential Future Products
- Pharmaceuticals
- Polymers
- Alcohol-to-jet fuel
- Renewable diesel
- Octane enhancers
- Biobased chemicals
- Acetone
- Acetic Acid
- Bio-cement
- Slow release fertilizer
- Activated carbon

Iowa State University
Bioeconomy Institute
First Demonstration Project

- Partners: Stine Seed Company, Frontline Bioenergy and Iowa State University
- Technology: ISU *autothermal pyrolysis* technology incorporated into modular system
- Approach: Pilot scale research to guide design of 50 ton per day demonstration plant using corn stover as major biomass feedstock

Pyrolysis Products

- Phenolic oil
- Pyrolytic sugar (later phase)
- Prilled biochar

Autothermal pyrolysis pilot plant (15-20 kg/h) supported design of demonstration plant

Autothermal pyrolysis demonstration plant (50 ton per day) near completion in Redfield, IA