

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Introduction to the DOE Hydrogen Program

Dr. Ned Stetson (Program Manager), Hydrogen and Fuel Cell Technologies Office

Advanced Materials for PEM Electrolyzer Virtual Workshop, March 30-31, 2022

Thank You for Joining Us!

Special thanks to the Organizing Team...

HFTO	National La	
James Vickers	Bryan Pivov	
Dave Peterson	The Buildin	
McKenzie Hubert	People	
Anne Marie Esposito	Stacey Youn	
Dave Peterson McKenzie Hubert Anne Marie Esposito	The Buildir People Stacey Your	

bs ar g g

Hudrogen

And all Speakers, Panelists, Moderators, & Scribes!

Mike Hickner Iryna Zenyuk Kathy Ayers Corky Mittelsteadt Nemanja Danilovic Ton Hurkmans Debbie Myers Shaun Alia DJ Liu Ahmet Kusoglu Guido Bender Alexey Serov

Jacob Spendelow Tom Zawodzinski Rod Borup Julie Forniciari Ahmed Farghaly Jake Wrubel Jason (Keonhag) Lee Leiming Hu Elliot Padgett Eun Joo (Sarah) Park James Young

The U.S. DOE Hydrogen Program

Key DOE Hydrogen Authorizations in the Energy Policy Act (2005, 2020) and Infrastructure Investment and Jobs Act (2021)

Hydrogen is one part of a broad portfolio of activities

www.hydrogen.energy.gov

The DOE Hydrogen Program is an agency wide effort, encompassing efforts from across the DOE

EERE – Hydrogen and Fuel Cell Technologies Office – H₂ Program Coordination Lead

Office of Energy Efficiency and Renewable Energy Office of Fossil Energy and Carbon Management Office of Nuclear Energy Office of Electricity Office of Science Office of Clean Energy Demonstrations Advanced Research Projects Agency – Energy Office of Technology Transition Loan Program Office

Priorities

- 1. Low-cost, clean hydrogen
- 2. Low-cost, efficient, safe hydrogen delivery and storage
- 3. Enable end-use applications at scale for impact

Workforce development, safety, codes, standards, and Environmental Justice priorities

Hydrogen Program Areas of Focus across Multiple Offices

	NEAR-TERM	N	LONGER-TERM		
Production	Gasification of coal,* biomass, and waste with carbon capture, ut Advanced fossil and biomass reforming/conversion/pyrolysis Electrolysis (low-temperature, high-temperature)		ilization and storage (*waste coal, other waste) Advanced biological/microbial conversion Advanced thermo/photoelectro-chemical H ₂ O splitting		
Delivery	Distribution from on-site productionTube trailers (gaseous H_2)Widespread pipeline transmission and distributionCryogenic trucks (liquid H_2)Chemical H_2 carriers				
Storage	Pressurized tanks (gaseous H ₂) Cryogenic vessels (liquid H ₂)	Geologic H ₂ storage (e Cryo-com Chemical H ₂	.g., caverns, depleted pressed carriers	d oil/gas reservoirs) Materials-based H ₂ storage	
Conversion	Turbine combustion Fuel cells	Advanced co Next generatic	mbustion on fuel cells	Fuel cell/combustion hybrids Reversible fuel cells	
Applications	Fuel refining Space applications Portable power	Blending in natural gas pi Distributed stationary pow Transportation Industrial and chemical pi Defense, security, and log	pelines wer Distributed CHP rocesses gistics applications	Utility systems Integrated energy systems	

President Biden and Energy Secretary Granholm at Climate Summit

"...I've asked the Secretary of Energy to speed the development of critical technologies to tackle the climate crisis. No single technology is the answer on its own because every sector requires innovation to meet this moment."

President Joseph R. Biden April 23, 2021

Launch of Hydrogen Energy Earthshot First of the Energy Earthshots June 7, 2021 at DOE Hydrogen Program Annual Merit Review

Secretary Jennifer Granholm June 7, 2021

Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

Bipartisan Infrastructure Law - Hydrogen Highlights

- Includes <u>\$9.5B</u> for clean hydrogen:
 - \$8B for at least four regional clean hydrogen hubs
 - \$1B for electrolysis research, development, demonstration, commercialization, and deployment
 - \$500M for clean hydrogen technology manufacturing and recycling R&D

President Biden Signs the Bipartisan Infrastructure Bill on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kilogram by 2026
- Requires developing a National Hydrogen Strategy and Roadmap and Clean H₂ Standard

Gathering stakeholder input for program planning

- Recent workshops and experts' meetings
 - Power and Control Electronics for Hydrogen Technologies Dec. 2-3, 2021
 - Advanced Liquid Alkaline Water Electrolysis January 26-27, 2022
 - Bulk Storage of Gaseous Hydrogen February 10-11, 2022
 - Liquid Hydrogen Technologies February 22-23, 2022
 - High-Temperature Electrolyzer Manufacturing March 8-9, 2022
 - <u>Advanced Materials for PEM Electrolyzers</u> March 30-31, 2022
- Request for Information
 - DE-FOA-0002698 RFI on Clean Hydrogen Manufacturing, Recycling, and Electrolysis
 - Official close date: yesterday March 29th, however responses will still be accepted
- Stay tuned for additional events, especially on manufacturing and recycling needs

H2@Scale: Enabler for Deep Decarbonization across Sectors and Jobs

Key Opportunities

- Industry and Chemicals
 Steel, ammonia, cement, syn fuels (e.g., aviation), exports
- Transportation

Trucks, marine, buses, etc.

Power and Energy Storage
 Long duration storage, NG
 blending, turbines, fuel cells

U.S. Snapshot

- 10 MMT of H₂/yr produced today with scenarios for 2-5X growth.
- +10 MMT clean H₂ could require ~ double today's solar or wind deployment
- Potential for 700K jobs, \$140B by 2030

Analysis of Potential Market Demand Scenarios

	\$7			Multiple stu can reduce	udies show H ₂ e global CO ₂	Scenarios base	ed on H ₂ cost		
\$6 		emissio		emissions	sions by 10 to 20%	• 5 MMT H_2/yr if 20% trucks u	used fuel cells		
e [\$/kg	[8]/< \$5 −					 9 MMT H₂/yr if 50% of jet f 4 MMT H₂/yr for all domest 6 MMT H₂/yr for groop mot 	uel was biofuel icammonia banal production		
lrogen pric	\$4	-				 12 MMT H₂/yr if all steel pla 16 MMT H₂/yr if 20% H2 bla 10 MMT H₂/yr for energy st 	ints in the U.S. used 100% H ₂ end in NG network orage, 100% renewable grid		
ld hyo	\$3	- MEDIUM- AND HEAVY-							
Threshol	\$2	DUTY VEHICLES			Need to get to <\$2/kg*				
		SUSTAINABLE AVIATION FUELS				\$1/kg will unlock n	narket potential		
	\$1	-							
	\$-			SYNTHETIC FUELS	IRON REDUCTION AND STEELMAK	INJECTION TO NG INFRASTRUCTURE	ENERGY STORAGE		
		0 5		14 18 2 Cumulativ	4 a bydragan damand nata	36 ntial [MMT/ur]	52 62		
H ₂ * H ₂	H_2 cost for trucks includes delivery and dispensing H_2 could compete at \$1 to \$2/kg higher cost with a carbon price Results based on preliminary analysis								
	PARTI	MENT OF ENERGY	OFFICE OF ENERGY E	FEICIENCY & RENEWABLE ENERG	v	HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE	10		

Snapshot of Hydrogen and Fuel Cells in the U.S.

Pathways to Reduce the Cost of Electrolytic H₂

Comprehensive electrolysis RDD&D Program

BIL Clean Hydrogen Programs allows for the complete development, demonstration, deployment and end-of-life recovery lifecycle for electrolysis technologies

U.S. DEPARTMENT OF ENERGY

Workshop focus and objectives

- To achieve the DOE H₂ Shot's and BIL Electrolysis Program's goals, low-cost commercial electrolyzer technologies will be essential
 - What advanced materials need to be developed for PEM electrolyzers?
 - What is needed to advance novel PEM electrolyzer materials to the point of incorporation into commercial products?
- What is the role for the DOE in developing and supporting advanced materials for PEM electrolysis
 - What are the priority areas DOE should focus on?
 - What are the R&D needs for individual components?
- Provide input on stakeholder needs that can form a basis for DOE-supported R&D efforts to advance electrolyzer technology for clean H₂ production

Meeting Objectives

Day 1 – Expert Presentations

Hear from experts on the challenges and opportunities for advanced PEM electrolyzer materials

Day 2 – Breakout Discussions

Discuss and prioritize the most promising and impactful opportunities for PEM Advanced Materials

Identify pathways to achieve $1/kgH_2$

Please use the Zoom Q&A feature to submit your comments & questions during the meeting

Thank you for your participation

Ned T. Stetson, Ph.D.

Program Manager, Hydrogen Technologies Hydrogen and Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy <u>ned.stetson@ee.doe.gov</u>

www.energy.gov/fuelcells www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE