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Executive Summary 
We analyze the solar startup landscape in the United States and investigate the role of public 
funding and other factors in the success of small businesses. Three solar entrepreneurial hubs - 
Silicon Valley, Los Angeles / San Diego, Boston - contain significantly more solar venture 
capital activity than the rest of the country. Through statistical modeling, we find that public 
funding for companies in these hubs has an outsized impact on their success in finding future 
investment, even after controlling for company and environmental factors. A regression 
discontinuity analysis establishes a causal link between public Federal funding and the success of 
a small business in soliciting private follow-on investment. Public funding can have a powerful 
role in sustaining private investment in a company, but its impact largely depends on the local 
investment space in which the company exists. 
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1 Introduction 
The United States has a robust ecosystem of private investors (angels, venture capitalists, impact 
investors, corporations, pension funds, etc.) that allows rapid technology development and 
enables disruptive changes [1–3]. However, clean energy technologies (cleantech) and solar 
technologies, specifically, are not currently the main focus of these investors, both in terms of 
number of finalized deals and amount of money invested [4–7]. After a burst of private 
investments between 2006 and 2011 that resulted in significant losses, funding for cleantech 
experienced a substantial contraction [8–11], which was subsequently met to a smaller extent by 
public research and development (R&D) investments. In addition to the clear societal benefits 
offered by clean energy technologies, supporting successful technology transfer mechanisms and 
enabling accelerated transition of new technologies from laboratories to market have consistently 
been two important goals of the U.S. Government [12–14]. In fact, the U.S. has actively invested 
in R&D projects led by small businesses, primarily through the Small Business Innovation 
Research (SBIR) and Small Businesses Technology Transfer Research programs [15,16] since 
1982. These programs support entrepreneurs across a wide range of technology areas, with a 
particular emphasis on defense and health-related applications. Furthermore, individual Federal 
agencies support small businesses through funding programs for specific technologies. As an 
example, during the last couple of decades, the Solar Energy Technologies Office (SETO) 
established within the Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. 
Department of Energy (DOE) has consistently funded small businesses via different programs 
spanning multiple initiatives (including the Solar America Initiative and the SunShot Initiative). 
See section 8.1.2 for a more detailed list of these funding opportunities. 

The impact of public funding programs has been investigated by several research groups (mostly 
with a focus on their influence on downstream R&D, publication, and patenting) both in the U.S. 
[17–20] - with a specific interest on the SBIR program [21–24] - and in other countries [25,26]. 
However, these studies take into consideration programs designed to cover broad industry and 
technology spaces with the risk to confound the impact of general policies and programs with 
industry-specific trends and features. Intrinsic differences between business sectors might 
obfuscate trends and lead to conclusions that are too general to be relevant. We have an unique 
opportunity to analyze the public intervention on a defined space (the solar industry) over more 
than 10 years (2007-2018), while the solar industry grew from having negligible value to 
significant global deployment [27–29]. We focus on a specific metric - follow-on funding – as a 
measure of public funding impact and its interaction with private investment. It should also be 
noted that the SETO programs represented in this study have a cost share requirement (a 
minimum of 20% for low tier projects, and a minimum of 50% for higher tier / demonstration 
projects)1. As a secondary effect, this requirement generally increases the quality of the 
applications, or at least the ability to generate follow-on investment: the applicants need to 

 
1 Cost share is generally defined as the portion of the total project costs not reimbursed by DOE; those costs must be 
paid by the awardee based on the requirements in 10 CFR 600, EPAct 2005, and Energy Act 2020. 
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validate their idea and secure some form of seed funding before accepting their SETO award. 
Although our analysis focuses on a specific program impacting the solar industry, we believe 
that the results, driven by a rigorous statistical methodology, can provide useful insights into 
other sectors and beyond the United States.  

In this paper, we first analyze the solar startup landscape in the United States and show the 
typical behavior for a small business developing new solar hardware or software technologies. In 
particular, we identify three solar entrepreneurial hubs in the country: the greater San 
Francisco/San Jose/Oakland metropolitan areas - referred to as Silicon Valley, the Greater 
Boston area, and the metropolitan areas of Los Angeles/San Diego. We develop a general linear 
model to find key predictors of future equity deals, and conduct a regression discontinuity 
analysis to establish a causality link between these predictors and the success of a small business 
in soliciting private follow-on investment. In this paper, “follow-on investment” is defined as 
any private investment in the small business finalized from the calendar year following the 
application to SETO. Therefore, any private investment raised to meet the cost share requirement 
for the award is not included in our analysis. We then explore similarities and differences in the 
impact of Federal funding based on the type of follow-on funding (equity, debt, or grants). Public 
funding can have a powerful role in sustaining further private investment in a company. 
However, the size of this role largely depends on the local investment space in which the 
company exists.  The results of this study illuminate the public-private interactions that may 
guide investment in solar technology, and provide important feedback for how future public 
funding programs could be designed to maximize their ability to help companies gather private 
investment. 

 

2 U.S. solar startup landscape 
Despite the significant compound annual growth rate of solar installations around the globe, the 
overall size of the solar industry is still small compared to other technology sectors, and the 
number of small businesses2 generating new technologies is quite low. We used Pitchbook [30] - 
a specialized firm focused on research and data analysis on companies, deals, funds, investors, 
and service providers across the entire private investment lifecycle including venture capital, 
private equity, and M&A transactions - to collect the number of equity deals completed in the 
solar space between 2000 and 2017 in the U.S. (Fig. 1(A), solid yellow). Although not an 
exhaustive list, the results represent a good approximation of the size and activity of solar 
startups. In fact, equity deals represent the majority of all transactions in the solar space, as 
shown in Fig. S1. Details of the query, data collection methodology, and definitions adopted in 
our dataset are discussed in sections 8.1.1 and 8.1.2. The solar space became attractive to 
investors in 2007; only less than a dozen deals were completed every year prior. At the peak 

 
2 We adopted the definition of small business utilized by the U.S. Small Business Administration (SBA). See section 
8.1.2 for additional information. 



Location-dependent public-private interaction in catalyzing solar technology commercialization 

3 

(2015), about 200 transactions were recorded per year. To put this in a broader context, a similar 
search for the cleantech sector in the same timeframe (2000-2017) returns an average of more 
than 400 transactions per year, with more than 800 transactions per year recorded every year in 
the last 5 years. In Fig. 1(A), we also plot the number of equity deals completed by companies 
that applied for SETO funding (blue line) as well as by only companies awarded by SETO 
(orange line). Deals finalized at any time in the company’s history, before and after their 
application for funding are recorded. Equity deals made by companies who applied to SETO 
funding programs represent roughly half of all equity deals recorded for U.S. solar companies in 
this timeframe, giving a sense of the extent of these programs in the space. Using the dataset we 
collected from different sources tracking all the companies SETO interacted with over the years, 
we are able to reconstruct the average funding history of a solar startup. Fig. 1(B), shows the 
percent of active companies (top panel) and the median transaction value (bottom panel) as a 

Figure 1. Analysis of the landscape of U.S. solar small businesses and typical evolution of solar hardware and 
software companies. (A) Number of solar equity deals in the U.S. recorded by Pitchbook over the years (solid 
yellow). Number of equity deals finalized by companies that have applied to SETO funding and were either 
funded or not funded (blue line). Number of equity deals finalized by companies funded by SETO (orange 

line). The first of the programs investigated herein was announced in 2007. The blue line overlaps with the 
yellow region before that. We interpret this as evidence that almost all domestic active solar companies 

applied to these early funding programs, showing the great need for Federal support for solar R&D activities. 
(B) Top: percentage of hardware and software solar companies that finalized an equity raise at any point of 

their life. The overlay boxes show the median age of the companies at the time of the application, and 
highlight the time window (3 years from the application) we considered for this study. Bottom: median 
transaction value for hardware and software solar companies as a function of their age. (C) Geographic 

distribution of number of active solar companies (represented by size of the circle) and amount of private 
equity investments (represented by fill color of the circle). Data are collected from Pitchbook and include 

transactions between 2000 and 2017 
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function of the age of the company. Y0 is the incorporation year. We show data for hardware and 
software companies independently to account for the different funding requirements for the two 
classes of technologies. The peak of activity for both classes occurs three to four years after the 
companies have been incorporated. The number of active companies decreases as they age. This 
could be related to three reasons: 1) the company stops raising private funds because an exit 
(e.g., acquisition, merger, or initial public offering) was completed; 2) it no longer needs venture 
capital (e.g., it is making significant revenue); or 3) the company went out of business.  

The bottom panel of Fig. 1(B) shows that hardware and software companies have very different 
trajectories. Software companies require less capital at the beginning and then ramp their 
fundraising efforts either to scale their product and make revenue or to increase their valuation 
right before an exit. On average, an exit happens 7-8 years after incorporation. In contrast, 
hardware companies require more funds to continue their product development. The median 
transaction value increases each year, up to a $30M average transaction value 14 years after 
incorporation (although very few companies remain in business that long: this number is an 
average of few data points). Our database does not include companies older than 14 years, so it is 
possible that this trend continues over an even longer timeframe. It is also important to note that 
the Federal support to these companies is a small fraction of the amount of money needed to 
fully develop a new technology and bring it into the market; the average DOE award amount is 
lower than $1M. However, our analyses suggest the impact of SETO funding can be significant 
if other conditions are met. This is also indicative of the mismatch between the needs of 
technology development in the solar space, especially hardware products, and how the venture 
capital system is structured in the United States. In fact, venture investments are designed to 
pursue a quick (3-5 years) exit with very high return on investment (in the range of 10-100x). 
The timeframe and the amount of capital needed by solar companies is not compatible with this 
traditional venture structure [5,31,32]. 

Private investment in solar technologies occurs in a geographically asymmetric manner.  In this 
paper, we introduce the definition of a “solar hub” to identify the geographic locations in the US 
where there is a significant solar startup ecosystem. We followed a data-driven approach to 
identify hubs using Pitchbook data on the zip code location of all the solar companies who raised 
at least one equity deal in the time frame between 2000 and 2017. Fig. 1(C) summarizes our 
findings. The circle size indicates the number of active solar companies in a specific region3, and 
the shade indicates the amount of private equity investment in the region. Three areas (solar 
hubs) clearly jump out for both the number of companies and total private investment: Silicon 
Valley, Los Angeles / San Diego, and Boston. These are the only three areas with more than 50 
active solar companies raising more than $1B in private equity investment. The activity or the 
amount of investment in every other area in the US is significantly lower. Solar hubs account for 
55% of the active solar small businesses and for more than 80% of the solar equity investments 

 
3 We looked at the number of companies rather than the number of deals to capture the presence of an ecosystem 
(having few companies in a location closing multiple deals does not constitute a hub). 
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in the US (with Silicon Valley being a clear outlier). In this paper, we compare the impact of 
Federal funding inside and outside of these three solar hubs. 

 

3 Impact of public funding 
In order to evaluate the connection between Federal funding and follow-on private investments, 
we examined equity deals closed within three years from a company’s application to SETO. This 
analysis assumes that a follow-on event within this time window is closely related to the SETO 
award. On the other hand, if an application was not selected for an award, one can reasonably 
assume that the technology readiness level and company maturity did not change significantly 
between the moment when they applied for Federal funding and the three following years.  

The average number of equity deals closed as a function of the company’s application ranking4 
demonstrates a generally linear relationship, as companies ranked highly by the SETO review 
process tend to close 2-3 times as many deals as those ranked near the bottom of a given 
application pool (Figure 2). SETO's review and selection process appears to be in alignment with 
the independent assessment made by private investors. Note that SETO publishes only the list of 
funded companies in alphabetical order and that application scores, rankings, and non-funded 
applicant names are considered procurement-sensitive information, so investors cannot make 
investment decisions based on this ranking data. It should also be noted that investor’s funding 
decisions are completely independent from the SETO assessment of the applications, despite 
anecdotal evidence that public announcement of SETO selections improved one or more 
companies’ chances of securing a future funding round. The approximately linear ranking-equity 
relationship indicates that SETO and private investors identified a similar quality of innovative 
technology and business prospects in this company pool. Of particular interest, a visual jump in 
the number of closed deals does not exist across the SETO funding line, as both unfunded and 
funded companies similar in ranking average about one closed equity deal within three years 
after applying to SETO (see Figure 2 close to the dashed vertical line). Public funding from 
SETO by itself does not appear to increase the probability of receiving follow-on funding for the 
average company. However, the following sections will demonstrate through statistical models 
that second-order interactions between SETO funding and other factors can have a significant 
role in modulating the impact of Federal funding for solar companies. 

 
 
 
 
 
 
 

 
4 See Figure S2 for more info on the ranking methodology. 
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4 Predicting future equity deals: the role of hubs 
To better understand the impact of Federal funding on the ability of companies to procure private 
investments, we constructed a general linear model to predict the number of equity deals secured 
by all first-time SETO applicants. In addition to SETO funding as a predictor, other 
environmental factors and company attributes were included as covariates, such as company age, 
previous equity/debt/grant financing, and whether the company’s primary technology involved 
hardware or software (see section 8.1.3 for details about the methodology and model). To 
account for the role of a company’s geographic location, we included a binary “solar hub” 
variable indicating whether the company was located in Silicon Valley, Los Angeles/San Diego, 
or Boston (see discussion above for more details), as well as the median income of its ZIP Code.  
The application year served as a proxy for the specific market conditions or other environmental 
factors that could affect the solar investment space over time.  Interaction terms were included in 
the model based on a priori hypotheses and exploratory analyses of relationships between 

Figure 2. Average number of equity deals for solar companies that applied to SETO programs as a function of 
the normalized DOE ranking. Each data point represents the average of eight consecutive positions in the 

ranking. The red line represents a linear fit to the ranking-equity deal relationship. The shade of each dot is 
related to the number of applications in each bin (darker color indicating more applications). The difference 

is due to the different number of applications in each funding opportunity. The funding threshold (dashed 
line) divides funded and not funded applications 
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predictors. After including all these potential interaction terms, statistically non-significant ones 
were removed from the final model discussed below. Although the included potential predictors 
are not exhaustive, our list includes those variables that are commonly used in the literature to 
analyze the success of a startup.  

 Although Federal funding is often assumed to incentivize private follow-on funding, 
model results indicate that being funded by SETO alone is not a statistically significant predictor 
of the number of equity deals received (Fig. 3(A)). The deal multiplier is defined as the 
predicted, multiplicative increase in the number of equity deals for a unit increase in a given 
predictor. Receiving funding from SETO provides a deal multiplier that is statistically 
indistinguishable from 1, indicating that this public funding alone does not help or hurt a 
company’s investment chances. The same conclusion can be made for a company’s location: 
being in a solar hub does not have a significant impact on the success of a startup. Despite the 
lack of independent effects, a strong synergy between SETO funding and geographic location 
dramatically boosts the likelihood of future investments. A small business funded by SETO and 
located in a solar hub makes 1.5-4.5 times the number of equity deals than a company funded by 
SETO but outside a hub or a company not funded by SETO, controlling for all other factors in 
the model (Fig. 3(A), SETO/Hub interaction variable). Across the sample, SETO-funded 
companies in a solar hub received 1.5 equity deals over the three years after the award, roughly 
three times as many as companies not funded by SETO or funded but outside a hub (Fig. 3(B)).  

These results can be interpreted in different ways. In general, it appears that public funding may 
be more effective at incentivizing private equity follow-on funding where there is a larger 
investor ecosystem in place. Despite an increasingly globalized economy, these results suggest 
that locality could still play an important role in investors being aware of new startups [33]. 
Another interpretation could be that hubs have so many more start-up candidates in the 
ecosystem that investors in these areas need a signal to sort through the noise of a large number 
of nascent technologies. This latter interpretation could indicate the need for a third-party, 
independent technology validator (SETO playing this role here) to give investors confidence in a 
new technology or startup. Other factors could play a role as well, such as solar hubs nurturing a 
more diverse set of high-risk, high-reward ideas. Other researchers and analysts have observed 
preliminary evidence supporting a similar trend in different contexts [10,34]. Moreover, our 
findings are consistent with the concept of clusters of innovations, defined as “global economic 
hot spots where new technologies germinate at an astounding rate and where pools of capital, 
expertise, and talent foster the development of new industries and new ways of doing business” 
[35–39]. However, relatively few, if any, studies have shown how public funding can interact 
with these innovation clusters and provide synergistic value in a statistically rigorous manner, 
controlling for important factors such as previous equity raised and company age. To our 
knowledge, these are the first statistical results to show how a Federal intervention in the clean 
energy space can be particularly effective when applied to an already-established ecosystem.  
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Figure 3. Results of the general linear model. (A) Impact of different variables on the probability of securing 
an equity deal, expressed as deal multiplier associated to each predictor. Deal multiplier is defined as the 

multiplicative increase in the number of equity deals predicted by the model for a unit increase in the 
predictor of interest. Error bars represent the 95% bootstrapped confidence interval (converged using roughly 
10,000 samples). The shade of the fill color represents the statistical significance associated to each variable 
(p-value). As an example, a p-value of 0.05 means that there is 1 in 20 (1/0.05) chance that the associated 

effect is a false positive and not significantly different from 1. (B) Average number of equity deals for 
companies located or not located in a solar hub, and funded or not funded by SETO 
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Regarding other aspects of the model, securing previous private investments (both in the form of 
equity deals or debt financing) increases the probability of a company obtaining more private 
funding (Fig. 3(A)). This result corroborates analyses by other researchers and analysts  [4–6] 
indicating that the venture capital structure in the U.S. relies too heavily on other investor 
decisions, rather than a technical and/or economic due diligence. This is especially true in the 
cleantech sector, which is relatively new and lacks consolidated industry knowledge, despite 
being often sensationalized in the media. It should also be noted that the interaction of the two 
variables (a company having secured both equity raises and debt financing) leads to a diminished 
ability to raise even more future deals (deal multiplier of 0.3, see Prev. Equity/Debt Interaction 
predictor in Fig. 3(A)). This finding confirms industry expectation that, if a company has already 
raised equity funds and debt, it is in a very late stage of technology development, possibly 
generating revenue, and is less likely to require further equity investment. Although this finding 
may be intuitive, the result indicates that we are capturing relevant industry trends and helps to 
validate the relevance of the model as a whole. 

Furthermore, based on our analysis, securing private investments for new hardware and 
manufacturing technologies is much harder than for software. In fact, software companies are 
able to secure on average twice the number of equity deals compared to manufacturing 
companies. This is consistent with the general trends discussed previously (Fig. 1(B)) and with 
the traditional venture capital model [7]. Investors are looking for high probability of very high 
returns within less than three years. Companies developing software products are most likely to 
satisfy the needs of such investors. 

Our analysis also shows that successful solar startups have the right idea at the right time. The 
SETO award year is a strongly significant predictor of equity deals, with a deal multiplier around 
0.8, indicating that a company applying in 2015 would receive about a third of the deals 
compared to a company in 2010. The total number of equity deals has risen since 2007 (Fig. 
1(A)), however our analysis of the industry landscape suggests that those deals involve just a few 
companies, making it more and more difficult for a new company to raise money and secure its 
first deal. The total amount of money invested by venture capitalists has decreased substantially 
over the years, increasing the competition for funding. Our data suggests that private investors 
prefer repeated funding rounds to the same entities at the expense of new entrants (like the 
companies included in this study). Higher-order polynomials fitted to this trend were 
insignificant, suggesting that the availability of equity deals have linearly decreased over time 
since the beginning of the SETO small-business programs studied here. 

Other predictors we looked at include the impact of previous grants (very weak statistical 
significance), the increase in the DOE ranking (very strong effect, consistent with the data shown 
in Fig. 2), the median income in the ZIP Code of the company location (no impact), and the age 
of the company (older companies are less likely to secure equity funds). 
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5 Regression discontinuity analysis 
The general linear model using the entire sample of SETO applicants elucidated the impact of 
different predictors on the success of a startup in raising private funds, highlighting the 
importance of SETO funding for companies inside a solar hub to receive follow-on investments. 
However, this model cannot establish causality between predictors and the number of equity 
deals due to the “third-variable” problem, in which a hypothetical unobserved variable correlates 
highly with an included predictor and muddies any causal explanation. To understand a causal 
link between SETO funding and follow-on equity funding, we next discuss a regression 
discontinuity analysis using a subset of our dataset. For this analysis, applications around the 
funding cutoff line (Fig. 2) are included in a simpler regression model in an effort to compare 
companies with characteristics approximately randomized across the funding line, such that the 
only difference between funded and unfunded companies is their receipt of the SETO award (see 
sections 8.1.4 and 8.1.5 for more information about our model and the quantitative method we 
used to determine the size of this subset). The Regression Discontinuity Design (RDD) allows us 
to make conclusions about causality if the following assumptions are met: 1) the intervention 
(SETO funding) occurs after ranking; 2) the funding cutoff line is arbitrary enough that company 
characteristics near the cutoff are randomized; and 3) any predictor not randomly distributed is 
controlled for in the model.  We believe the DOE selection process and our model largely meets 
these criteria with a couple caveats (see section 8.1.4 for details about review/selection process).  
The results of supplementary analyses provided in sections 8.1.5 and 8.2 provide strong evidence 
that our RDD results can be interpreted as a causal argument for the role of public SETO funding 
in facilitating subsequent private support for companies in solar hubs. 

Since the RDD model relies on a smaller subset of data near the funding line, a smaller number 
of predictors are included in the model to maximize statistical power. Necessary predictors 
include the SETO funding intervention, the application ranking, solar hub location, interactions 
between these variables, as well as any covariates not randomly distributed across the funding 
cutoff.  It was found that both previous equity deals and award year were not randomly 
distributed, as companies not in a hub and just below the funding line both hold significantly 
more equity deals, and applied in earlier years compared to the rest of the dataset (Figs. S3 and 
S4).  In addition to these variables, we have also included the hardware/software binary variable 
and company age in the model because they demonstrated significant effects in the general 
model using the entire sample size. 

The RDD model results are very consistent with those found in the model using the entire dataset 
(shown in section 4 of this paper). Once again, neither SETO funding or geographic location 
alone have a significant impact, however their interaction provides a strongly significant effect, 
providing a fourfold increase in the number of equity deals compared to companies not in a hub 
and/or not funded by SETO (95% CI: 2-16) (Fig. 4). These results are a strong case for a causal 
role in SETO funding leading to greater private investment for solar companies after the award 
because we have controlled for the two variables not randomized across the funding line. The 
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causality argument would only be disconfirmed if another variable not included in the model 
were found to vary exactly with the SETO funding intervention. We believe we have analyzed 
and included most of the company attributes associated with startup success, and look forward to 
any future work that would suggest other important variables to include. Also similar to the 
larger model, both more previous equity deals and being a software company increases a 
company’s predicted number of equity deals received, and applying in later years reduces the 
predicted number of deals.  Results are extremely similar across various bandwidth values in the 
RDD (Table S2), indicating the results are not sensitive to or dependent upon the choice of 
bandwidth and number of companies included. 

A closer look at the average number of deals for companies just below and above the funding 
cutoff line can further our understanding of the impact of SETO funding.  Without breaking 
down companies by their geographic location, no discontinuity in the number of equity deals 
exists at the cutoff (Fig. 5(A)).  However, when examining only companies in a solar hub, a clear 
discontinuous jump occurs, with companies just above the funding line receiving three times as 
many deals as those below (Fig. 5(B)).  In contrast, the reverse trend is seen for companies not in 
a hub, with those just below the funding line showing a widely variable but larger number of 
equity deals compared to those above (Fig. 5(C)). 

Figure 4. Impact of different variables on the probability of securing an equity deal as calculated with the 
regression discontinuity analysis, expressed as deal multiplier associated to each predictor. The shade of the 

fill color represents the p-value for each predictor 

 



Location-dependent public-private interaction in catalyzing solar technology commercialization 

12 

 

Figure 5. Synergistic Effect of SETO Funding and hub ecosystem as shown by the regression discontinuity 
analysis. Average number of equity deals for companies right above and below the funding line for the entire 
dataset of companies (A), only the companies located in a solar hub (B), and only the companies not located 

in a hub (C). Horizontal lines and the shaded areas represent respectively the average and standard 
deviation values between the data points shown in the plots 
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This comparison at first suggests that SETO funding is hurting companies not in a solar hub.  
However, it is important to consider the covariates not randomly distributed around the cutoff to 
explain the phenomenon.  As discussed above, both previous equity funding and application year 
are strong predictors of future equity deals, and both demonstrate significantly different 
distributions for companies not in hubs and not funded by SETO (Figs. S3 and S4).  In our 
sample, since unfunded companies not in a hub applied with about twice as many previous deals 
as the rest of the samples (and applied about 1.5-2 years earlier) these attributes led to a much 
higher number of deals for these companies, even though they were not funded by SETO. 

The analysis above demonstrates the clear need to check that all company attributes are 
randomized around the cutoff for an RDD design and to include those not randomized in the 
model.  After accounting for both previous equity and application year, the interaction between 
SETO funding and company location is strongly significant, confirming results from the general 
linear model and emphasizing the important role that public funding plays in solar hub locations. 

 

6 Key predictors of other investment types 
In the previous analyses, we have taken into consideration only equity deals under the 
assumption that equity investment is a required initial step in the overall successful path of 
bringing new technologies to market. We now test this hypothesis to verify if the same predictors 
have any effect on other types of private or public investment. Following our classification of 
investment types (see Table S1 for our complete definition), we now perform two additional 
general linear models with the entire sample to predict the number of debt financing deals (Fig. 
6(B)) as the number of public or private grants received (Fig. 6(C)). We are still limiting our 
analysis to the first three years after the time of the application to be able to infer a link between 
the application for Federal funding and the investment action by the private sector. Fig. 6 
provides a direct comparison between the calculated values for the deal multipliers in the case of 
equity deals (panel A, repeated from Fig. 3 to allow an easier comparison), debt (panel B), and 
grants (panel C).  

Government funding is not linked to debt financing in any case, directly or through the 
interaction with another variable. This is a clear reflection of the traditional nature of these 
Federal programs, consistently aimed at supporting early-stage research and technology 
development as opposed to scaling-up companies or products. Having had previous debt 
financing events or previous equity rounds are the strongest predictors of future debt financing. 
Software companies seem to still have some advantage over hardware companies in raising debt. 
All the other predictors do not have a strong impact. This is also a reflection of the different 
nature of due diligence made by banks and financiers before approving debt financing, aimed at 
verifying the ability to generate sufficient cash flow to repay the loan rather than on the 
technology itself. 
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 SETO funding does not appreciably increase the number of public or private grants from 
other sources. Furthermore, the model as a whole is a poor predictor of receiving grants, as 
company age is the only statistically significant predictor. One of the stated goals of the funding 
opportunities examined in this study was to assist independent small businesses which can fully 
support themselves after the Federal financial assistance, continue to grow, and successfully 
bring a new technology into the market. These opportunities were not intended for creating a 
product, organization, service, or other entity or item which requires continued government 
support to operate. Our findings can be considered an ex-post validation of the success in 
meeting this goal. 

 

7 Conclusions 
In conclusion, we analyzed a large dataset of companies operating in the solar space in the 
United States in the last 10 years. By adopting rigorous statistical methodologies, we identified 
predictors of the number of deals made by solar small businesses and assessed the impact of 
Federal funding on the technology transfer to the private space. SETO funding has a strong 
association with future equity deals for companies located in solar hubs and a limited impact on 
companies receiving future grants or debt deals. 

  

Figure 6. Impact of different variables on the probability of securing an equity deal (A), raising debt (B), or 
winning a public (Federal or state) grant expressed as deal multiplier associated to each predictor. The shade 
of the fill color represents the p-value for each predictor. The entire dataset has been used for this analysis; 

the general linear model has been applied 
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8 Supplementary information 
8.1 Materials and methods 
8.1.1 Pitchbook query 
Results shown in Fig. 1 are based on data exported from PitchBook [30] using the query 
available at this link: https://my.pitchbook.com/?pcc=147826-00. We queried the PitchBook 
database using “solar” as only keyword. We filtered the results to include only companies with 
office location in the United States, and having completed a Venture Capital raise (All VC 
Stages, All Round Numbers, All Series). At the time of completion of this work, this query 
resulted in 753 unique companies, 2,165 unique deals, 1,574 unique investors. 

 

8.1.2 Database 
We collected data about any type of funding event related to 584 solar small businesses that 
applied to the following funding opportunities run by SETO or previous iterations of the same 
DOE program since 2007: Pre-Incubator, Incubator 1, Incubator 2, Incubator 3, Incubator 4, 
Incubator 5, Incubator 6, Incubator 7, Incubator 8, Incubator 9, SunPath 1, SunPath 2, SunPath 3, 
SolarMat 1, SolarMat 2, SolarMat 3, SolarMat 4, SolarMat 5, Technology to Market 1, 
Technology to Market 2, Technology to Market 3 [40,41]. We used the small business definition 
adopted by the U.S. Small Business Administration (SBA) [42]. This information was self-
reported by the applicant at the time of the application. Companies could apply more than once; 
the final list of 584 companies was obtained starting from 962 distinct applications. Of these 
companies, 129 were awarded, for a total of 174 different awards. The total DOE investment on 
these awards across the different programs amounts to $240.68M. 

Data on funding events were collected from three different data sources: Pitchbook [30], a 
specialized firm focused on research and data analysis on companies, deals, funds, investors and 
service providers across the entire private investment lifecycle including venture capital, private 
equity and M&A transactions; Crunchbase operated by TechCrunch [43], a crowd-sourced 
database of the startup ecosystem, consisting of investors, incubators, startups, key people, funds, 
funding rounds and events; Bloomberg New Energy Finance [44], a data company focused on 
energy investment and carbon markets research, tracking investment trends and deal flow. For 
each transaction, we recorded year of the event, company name, amount, and funding type (see 
Table S1 for the classification we adopted). We tracked 2219 funding events (1080 entries from 
Pitchbook, 607 entries from CrunchBase, 532 entries from Bloomberg New Energy Finance). 
We manually removed duplicates; in case of discrepancies between two or more data sources, we 
selected the higher amount reported. The final database has 1418 unique funding events.  

We collected all data associated a company through its entire history, including transactions 
occurred before and after the application to DOE. 
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8.1.3 Negative binomial regression model 
The primary dependent variable (DV) for our analyses, the number of equity deals in the three 
years after application to SETO, can be well-represented using a negative binomial (NB) 
distribution (see Fig S5).  A goodness-of-fit test demonstrated that the NB distribution (χ2 = 6.27, 
p = 0.1) provides a much better fit for this variable than a Poisson distribution (χ2 = 651.98, p < 
0.0001), indicating that the distribution of equity deals is overdispersed. 

Based on this information, negative binomial regressions were performed for all statistical 
models discussed in this paper, using a general linear model (GLM) package in R with a log link 
that automatically calculate the dispersion parameter based on the data.  This link family 
provides familiar interpretation of regression coefficients such that their exponentiated values 
provide the multiplicative increase in the DV for a unit increase in the independent variable (IV), 
holding all other IVs constant. 

Three separate models were performed for each type of follow-on funding: equity, grants, and 
debt.  The following equation modeled the expected number of deals for a single company: 

𝐸𝐸[𝑦𝑦𝑖𝑖|𝒙𝒙] =  

𝒆𝒆β0+β𝑇𝑇x𝑇𝑇+β𝑅𝑅x𝑅𝑅+β𝑅𝑅2x𝑅𝑅
2+β𝐻𝐻x𝐻𝐻+β𝐸𝐸 log 𝑥𝑥𝐸𝐸+β𝐷𝐷 log 𝑥𝑥𝐷𝐷+β𝐺𝐺x𝐺𝐺+β𝑆𝑆x𝑆𝑆+β𝐼𝐼x𝐼𝐼+β𝑌𝑌x𝑌𝑌+β𝐴𝐴x𝐴𝐴+β𝑇𝑇𝑅𝑅x𝑇𝑇x𝑅𝑅+β𝑇𝑇𝐻𝐻x𝑇𝑇x𝐻𝐻+β𝑌𝑌𝑆𝑆x𝑌𝑌x𝑆𝑆+β𝑅𝑅𝐸𝐸x𝑅𝑅 log 𝑥𝑥𝐸𝐸+β𝐸𝐸𝐷𝐷 log𝑥𝑥𝐸𝐸 log 𝑥𝑥𝐷𝐷  

where 𝐸𝐸[𝑦𝑦𝑖𝑖|𝒙𝒙] is the expected value of the DV given a set of predictor values, all β’s are 
regression parameters, and yi = ye is the number of equity deals, yi = yg is the number of grant 
deals, and yi = yd represents the number of debt deals for the three separate models conducted.  
Across all cases, the independent variables are as follows: 

• xT is the binary ‘treatment’ variable indicating whether a given applicant was funded by 
SETO (1) or not (0). 

• xR is the normalized selection ranking variable centered around the funded/not-funded 
cutoff. 

• xH is the binary variable indicating whether a company applicant is located in a 
designated solar hub region (1) or not (0). 

• xE is the count of number previous equity deals by a company prior to its SETO 
application. 

• xD is the count of number previous debt deals by a company prior to its SETO 
application. 

• xG is the count of number previous grant deals by a company prior to its SETO 
application. 

• xS is the binary variable indicating whether a company applicant produces a software (1) 
or hardware (0) product. 
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• xI is the median income of the zip code in which the company applicant is incorporated. 

• xY is the year of the company’s SETO application. 

• xA is the age of the company at the time of its SETO application. 

All variable relationships were visually inspected to determine the potential for 1) nonlinear 
relationships between an IV and the DV, and 2) interactions between IVs.  Based on these 
inspections, a log-transform of previous equity (xE) and previous debt (xD) data were performed 
due to a plateau in the number of future deals predicted as the number of previous deals becomes 
large.  In addition, interaction terms in the equation above were included based on their visual 
inspection and confirmed statistical significance when entered into the model.  Interactions 
included the model based on visual inspection of their relationship, but not significant in the 
model, were removed for clarity to minimize the overall number of explanatory variables.  

In all models, the βR2 and βTR terms are nonsignificant and therefore removed from final model 
results for the sake of clarity.  Their inclusion or exclusion does not dramatically change the 
significance or effect size of any other variables. Adjusted R2 values are reported for all model 
results as a preliminary way to prevent overfitting by solely adding additional predictors. 

Regarding sample size, G-Power [45,46] was employed to determine a minimum number of 
samples required to estimate a medium effect size (f2 = 0.15) for the R2 increase when including 
both the SETO funding and funding-hub interaction variables to the model, with a Type 1 error 
rate of 0.05 and power of 0.95. The power analysis suggests a minimum of 107 samples, 
indicating our sample size of 584 companies is sufficient. 

 

8.1.4 Regression discontinuity analysis assumption testing 
A formal regression discontinuity (RD) analysis requires that: 1) the intervention (SETO 
funding) occurs after ranking; 2) the funding cutoff line is arbitrary enough that most company 
characteristics near the cutoff are randomized; and 3) covariates are continuous across the cutoff 
and any predictor not randomly distributed is controlled for in the model.  The first requirement 
is met by the review process, as funding is provided to applicants only after a ranking has been 
finalized.  The second requirement is largely met by the DOE review and selection process. As 
stated in the funding opportunity announcements, the Selection Official may consider the 
technical merit, the Federal Consensus Board’s recommendations, program policy factors, and 
the amount of funds available in arriving at selections for this FOA, all of which result in a final 
selection ranking. In fact, DOE officials and even external independent reviewers (subject-matter 
experts) are aware of the expected number and average size of the awards during the review and 
selection process. Program policy factors include but are not limited to the degree to which the 
application exhibits technological or programmatic diversity when compared to the existing 
DOE project portfolio; the degree to which the application optimizes the use of available funding 
to achieve programmatic objectives; the degree to which the application is likely to lead to 
increased employment and manufacturing in the United States or provide other economic benefit 
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to U.S. taxpayers; the degree to which the final group of selected applications represent a desired 
geographic distribution; the degree to which the proposed project avoids duplication/overlap 
with other publicly or privately funded work.  All covariates selected for the model also 
demonstrate continuity across the cutoff, satisfying the third RDD requirement (Figure S3).  Two 
covariates demonstrate substantially different means on each side of the cutoff, as shown in 
Figures S4 and S5, due to strongly linear slope near the cutoff. 

It is possible that the use of program policy factors could alter the expected random distribution 
of applicants immediately above and below the cutoff line if the same type of companies were 
consistently chosen across all funding opportunities based on the factors described above.  This 
possibility seems unlikely, however, because of these details about the review process, we 
describe several statistical tests described below that build the case that we account for covariates 
showing relationships with ranking around the cutoff, and that these variables by themselves 
cannot predict a discontinuity in predict number of follow-on deals at the funding cutoff line.  
We believe the results of these supplementary analyses provide strong evidence that our RDD 
results indicate a causal argument for the role of public SETO funding in companies receiving 
subsequent private support. 

 McCrary [47] suggested a statistical analysis to test the continuity of the running variable 
(in this case, SETO ranking) in RDD analyses. If manipulation either by companies or by 
reviewers were commonplace, it is assumed that one would see an accumulation in the density 
function of the ranking variable on either side of the cutoff. Figure S7 plots the probability 
density function of the SETO ranking variable on each side of the funding cutoff (x = 0).  
Visually, no jump in the density can be seen at the cutoff, and the McCrary test confirms that 
there is no significant discontinuity (z = 0.17042, p = 0.8647, bin-width of 2.572 and bandwidth 
of 24.818). 

 Although this is a promising result to indicate no manipulation around the cutoff, the 
McCrary analysis does not technically apply to cases when the running variable is not strictly 
continuous as is the case here with a discrete ranking variable. Therefore, additional tests are 
required to determine the extent to which, if any, covariates are not randomized around the 
funding cutoff. First, we perform a logistic regression with logit link to predict SETO funding 
(xT) using all other predictors in the model, using a ranking bandwidth of +/- 20 above and below 
the cutoff (135 companies, results do not change for other bandwidths). This test can indicate 
whether funded and not-funded companies have been sorted based on any of the covariates that 
could provide a confounding effect with SETO funding to create a regression discontinuity.  
Across all predictors, only company age (xA, 𝑒𝑒𝛽𝛽= 0.91, p = 0.04) and the software/hardware 
binary variable (xS, 𝑒𝑒𝛽𝛽 = 3.22, p = 0.02), suggesting that older companies were only slightly less 
likely to receive funding, and software companies were significantly more likely to receive 
SETO funding, on average, across all funding programs. In fact, software technologies have been 
a specific focus of some of the funding opportunities examined here. SETO has been one of the 
very few offices providing Federal funding to companies developing software technologies, and 
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the number of applications in the software space sometimes was higher than applications for 
hardware technologies. Based on these results, we include both age and software/hardware 
variables in the final RDD model (described below) to control for these covariates. Note that 
there could always exist other variables confounded with the funding variable when the strict 
RDD assumptions are not met, however we believe we have accounted for most potential 
covariates that would play a significant role. 

 A final method to assess whether a jump at the cutoff is due to the treatment variable or 
other covariates is to visually compare predictions between 1) the full model with covariates and 
treatment variable and 2) a model only including covariates. Figure S8 compares each of these 
models, splitting apart predictions for companies located in a hub (left pane) and not in a hub 
(right pane) to account for the SETO-Hub interaction discussed in the main text. Covariates 
included in these models are xR, xH, xY, xA, xE, and xS, along with significant interactions. As is 
clearly seen in the left pane, for those companies in a hub, the model with covariates only (red 
line) predicts a continuous increase in the number of deals predicted across the funding line. In 
strong contrast, the full model including xT demonstrates a sharp discontinuity across the cutoff 
line, nearly tripling the predicted number of deals if funded by SETO. For those companies not 
located in a hub, a discontinuity in the opposite direction is seen in both models, largely 
explained by the larger number of companies with previous equity funding directly below the 
cutoff line as described in the main text. 

 Taken together, although the DOE selection process does not formally meet every 
assumption required for a causal interpretation, the RD results discussed in the text suggest a 
causal role of SETO funding helping companies to gather private support in solar hub regions. 

 

8.1.5 Regression discontinuity analysis final design 
After considering results of the above analyses to test assumptions and determine important 
covariates, the final RD model employed the following model: 

𝐸𝐸[𝑦𝑦𝑖𝑖|𝒙𝒙] = 𝑒𝑒β0+β𝑇𝑇x𝑇𝑇+β𝑅𝑅x𝑅𝑅+β𝑅𝑅2x𝑅𝑅
2+β𝐻𝐻x𝐻𝐻+β𝐸𝐸 log𝑥𝑥𝐸𝐸+β𝑆𝑆x𝑆𝑆+β𝑌𝑌x𝑌𝑌+β𝐴𝐴x𝐴𝐴+β𝑇𝑇𝑅𝑅x𝑇𝑇x𝑅𝑅+β𝑇𝑇𝐻𝐻x𝑇𝑇x𝐻𝐻 

where 𝐸𝐸[𝑦𝑦𝑖𝑖|𝒙𝒙] is the expected value of the DV given a set of predictor values, all β’s are 
regression parameters, and yi = ye is the number of equity deals, yi = yg is the number of grant 
deals, and yi = yd represents the number of debt deals for the three separate models conducted.  
Across all cases, the independent variables have the same definitions as for the full regression 
model discussed in the section above. The xR

2 variable was not significant in any RD model, 
indicating a fairly linear relationship between the number of deals and DOE selection ranking, 
and therefore it has been removed from most results for simplicity. 

 The primary methodological question regarding RD designs is the choice of bandwidth.  
We have implemented a cross-validation method originally discussed in Imbens [48] to 
determine an optimal bandwidth, however we have replicated statistical models across multiple 
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bandwidths above and below the optimal choice to confirm the robustness of the findings. Figure 
S9 plots the mean squared error (MSE) of the RD model above for increasing choice of 
bandwidth. Clearly, three plateau regions are seen in which the MSE is roughly the same. Based 
on these results, RD models were conducted using bandwidths of 15, 20, and 30 to confirm the 
robustness of the results. Results are largely insensitive to bandwidth, with the SETO funding-
hub interaction strongly significant across all choices (see Table S2).  The only significant trend 
with respect to bandwidth is the increasing effect size and statistical significance of software 
companies having a higher probability of receiving equity deals. Results from the model using 
the bandwidth of 20 are reported in the main text. 

 

 

8.2 Supplementary figures 
 

 
 

Figure S1. Percentage of equity, debt, and grant deals for each year between 2000 and 2016 made by solar 
companies that interacted with SETO. The majority of transactions at any point in time are equity deals 
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Figure S2. Schematic representation of the normalization procedure we adopted to establish the ranking 
position within funding opportunities with a different number of applications and awards. First, we assigned 
position 1 in the ranking to the lowest scoring funded application, and position 0 to the highest scoring not-

funded application. Then, the funding opportunity with the highest number of funded applications will dictate 
the highest possible position in this ranking; the funding opportunity with the highest number of not funded 

applications dictates the lowest possible position in the ranking. Applications ranking for each funding 
opportunity was then determined through a linear interpolation process between the highest and the lowest 

possible positions. Numbers in the figure are just an example and do not represent the actual number of 
total applications in our dataset 



Location-dependent public-private interaction in catalyzing solar technology commercialization

22 

Figure S3. A sample of relationships between application ranking and covariates using 6-width binning.  The 
dotted vertical line in each graph indicates the funding cutoff.  In each graph, application ranking is plotted 

along the x-axis and the covariate of interest is plotted along the y-axis.  Although nonzero-slopes exist across 
the funding cutoff line that create different means on each side, all relationships are generally continuous.  
Those variables with significant relationships with application ranking near the cutoff (e.g., Previous Equity 

Deals, Software Company) are included as covariates in the RDD model 
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Figure S4. Number of previous equity deals for companies located and not located in a solar hub, comparing 
funded and not funded applications. Companies not funded by SETO and not in a hub have disproportionately 

more previous equity deals than average. This reflects the nature of the SETO programs, focusing on new 
ventures with limited history, but also the nature of the companies outside the solar hubs 

 

Figure S5. Average application year of companies located and not located in a solar hub, comparing funded 
and not funded applications. Our dataset has a disproportionate number of applications that were not funded 

by SETO and were not in a hub in the earlier rounds of the program 
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Figure S6. The comparison of the theoretical negative binomial distribution (red line) to the actual distribution 
of the number of equity deals used as the primary dependent variable in this analysis.  The left pane shows the 
theoretical versus actual probability density function and the right pane demonstrates a similar comparison of 

the cumulative density functions 

Figure S7. Density as a function of the SETO ranking variable along the x-axis.  Black circles represent mean 
density given a bin width of 2.572.  Solid black line indicates the best fit of a density function independently 

on each side of the cutoff 
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Figure S9. Predict average number of equity deals as a function of SETO selection rankings for the full 
covariates plus treatment model (blue line) compared to the covariates-only model (red line).  The left pane 
illustrates predicted number of deals for companies in a hub, whereas the right pane visualizes the predict 

deals for companies not located in a hub.  The left pane demonstrates the clear discontinuous jump in 
predicted number of deals at the funding line for those companies in a solar hub region 

Figure S8. Predict average number of equity deals as a function of SETO selection rankings for the full 
covariates plus treatment model (blue line) compared to the covariates-only model (red line).  The left pane 
illustrates predicted number of deals for companies in a hub, whereas the right pane visualizes the predict 

deals for companies not located in a hub.  The left pane demonstrates the clear discontinuous jump in 
predicted number of deals at the funding line for those companies in a solar hub region 
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8.3 Supplementary tables 
 

Table S1. Classification of the different funding types adopted in this paper. We grouped different funding 
types into 4 groups, depending on the level of perceived risk associated the typical investor and on the typical 

expected return at the time of the transaction 

Equity Exit Debt Grants 

Angel / Seed Merger & Acquisition Public debt Incubator  

Private Equity IPO Private debt Accelerator 

Series A   Private grant 

Series B   Public grant 

Series C   Product crowdfunding 

Series D    

Series E    

Series F    

Series G    

Series unknown    

Series Early Stage    

Series Late Stage    

Bridge    

Convertible Note    
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Table S2. Beta weights (β), standard errors, (SE), and probability values (p-values) associated with predictors 
in the regression discontinuity analysis predicting equity deals for various choices of bandwidth (15, 20, and 
30).  A normalized ranking variable was used for all analyses. Bolded results are significant at the p < 0.01 

level 

 
Bandwidth 

15 20 30  

Predictors β SE p β SE p β SE p 

Funding (xT) 0.07 0.49 0.88 -.19 0.42 0.65 -0.26 0.38 0.50 

Hub (xH) -0.64 0.33 0.06 -0.55 0.27 0.04 -0.24 0.23 0.29 

Ranking (xR) -0.01 0.03 0.89 0.01 0.02 0.74 0.01 0.01 0.56 

Funding: Hub 
Interaction 

1.52 0.54 0.004 1.65 0.44 <0.001 1.21 0.40 0.002 

Funding: Ranking 
Interaction 

0.01 0.06 0.91 0.02 0.04 0.57 0.02 0.03 0.51 

Award Year (xY) -0.20 0.06 0.001 -0.23 0.05 <0.001 -0.24 0.05 <0.001 

Age (xA) -0.03 0.03 0.24 -0.03 0.02 0.16 -0.03 0.02 0.12 

Log of Previous Equity 
(xE) 

0.89 0.20 <0.001 0.88 0.17 <0.001 0.88 0.15 <0.001 

Hardware / Software 
(xT) 

0.61 0.38 0.11 0.80 0.33 0.02 1.12 0.29 <0.001 
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