HTE Stack Manufacturing Cost Analysis

Brian D. James, bjames@sainc.com Jacob H. Prosser Sujit Das 8-9 March 2022

STRATEGIC ANALYSIS

Outline

- System-Level Vision
- Solid Oxide Electrolysis Cells
- DFMA Cost Estimation Methodology
- Major Assumptions
- Solid Oxide Electrolysis Stack Cost Results
- Possible Pathway to Lower Stack Cost

SOEC SYSTEM DIAGRAM

Modules/Blocks/System: To take advantage of Economies of Physical Scale & Manufact. Rate

STACK-MODULE CONCEPT Factory-built, Mass-Produced Modules & Module Skids

INDUSTRY PROJECTS PATH TO \$1/KG (Bloom Energy White Paper)

\$1.20/kg

\$1.00/kg

Potential for <\$1/kgH₂ with:

- Low-cost electricity
- Waste heat integration
- Policy incentive

Low capital cost, low/efficient company markup

\$1.10/kg

- Low installation cost
- (Presumably) high manufacturing rate

Source: Bloom Energy (2021): The Role Of Solid Oxide Technology In The Hydrogen Economy: A Primer White Paper, May 2021.

SOEC COST & PRICE LANDSCAPE

DOE Stack Target is <\$100/kW but ~\$50/kW is likely required to achieve near \$1/kgH₂

	Preliminary Estimates (2022)		Bloom Energy (2021)	
YEAR	2022 (50MW/yr)	2030 (To achieve EarthShot Target))	2020	2030
Total System Cost (\$/kW) BOP Cost Stack Cost	\$950/kW ~\$700/kW ~\$250/kW	\$230/kW ~\$150/kW ~\$50/kW	\$917/kW NA NA	\$229/kW NA NA
System Price (\$/kW)	\$1,235/kW (30% markup)	\$300/kW (30% markup)	\$1,192/kW (30% markup)	\$298/kW (30% markup)
Cost of Electricity (\$/kWh)	\$0.02	\$0.015	\$0.02	\$0.014
Starting Efficiency (kWh/kg)	34.4 (stack) 39.8 (sys)	34.4 (stack) 37.1 (sys)	36.5 (stack)	36.5 (stack)
Capacity Factor	90%	90%	70%	50%
Cost of H2 (\$/kg)	~\$2.84/kg	~\$1.19/kg	\$2.14/kg	\$1.15/kg

SOEC COST & PRICE LANDSCAPE

DOE Stack Target is <\$100/kW but ~\$50/kW is likely required to achieve near \$1/kgH₂

	Preliminary	Estimates (2022		(2021)
	2022 (50MW/yr)	2030 (To achieve EarthShot Target	Consistent with IRENA 2050 Target* <\$200/kW (stack) a	
Total System Cost (\$/kW) BOP Cost	\$950/kW ~\$700/kW ~\$250/kW		<\$300/kW (systen	
System Price (\$/kW)	\$1,235/kW (30% markup)	\$300/kW (30% markup)	\$1,192/kW (30% markup)	\$298/kW (30% markup)
Cost of Electricity (\$/kWh)	\$0.02	\$0.015	\$0.02	\$0.014
Starting Efficiency (kWh/kg)	34.4 (stack) 39.8 (sys)	34.4 (stack) 37.1 (sys)	36.5 (stack)	36.5 (stack)
Capacity Factor	90%	90%	70%	50%
Cost of H2 (\$/kg)				

7

DFMA Cost Estimation Methodology

- A <u>bottoms-up manufacturing cost analysis</u> approach used to build system production costs step-by-step
 - A product is broken down into constituent parts, and a specific design and fabrication procedure is conceptualized for each component
 - Raw material and processing costs for each component and step are calculated using an Excel-based model that considers material, equipment, tooling, labor, energy, markup (if necessary), and financial costs.
- Provides insights into both high-cost materials and processes and what cost targets are feasible at current device or system performance levels
- Optimal manufacturing cost of an SOE stack in annual total or normalized expenditures in \$/kW (DC stack input) or \$/cm² of total SOE cell area

Major Stack Parameter & Cost Estimation Assumptions

	Parameter	Unit	Default Model Values
	Annual Production Rate	MW/year	25 / 50 / 75 / 100 / 200 / 350 / 500 / 650 / 825 / 1,000 / 1,150 / 1,300 / 1,450 / 1,600 / 1,800 / 2,000
	Stack Rated DC Power Input	kW _{DC}	50
	Cell Construction		Electrolyte Supported / Hydrogen-Electrode Supported
	Cell Operating Voltage	V/cell	1.285 (thermo-neutral)
	Cell Current Density	mA/cm ²	900 / 1500*
	Cell Power Density	W/cm ²	1.157 / 1.928
	Stack Oversizing for Degradation	%	10%
*Based on 48 5-day working weeks (240 total days) per year with two 8-hour (7-hour productive) shifts per day for a total of 3,360 hours per year (h/year).	Cell Size	cm x cm	15 x 11
	Cell Active-to-Total Area Percentage	%	60%

Cell Active Area

cm²/cell

99

SOE Cell Stack Material Assumptions

Component/Layer	Electrolyte-Su	upported Cells	Hydrogen Electrode-Supported Cells		
	Material	Thickness (µm)	Material	Thickness (µm)	
Hydrogen Electrode Support Layer (Cathode)	N/A	N/A	NiO / 3-YSZ	280	
Hydrogen Electrode Functional Layer (Cathode)	NiO / 8-YSZ	25	NiO / 8-YSZ	20	
Electrolyte	10-SSZ	125	8-YSZ	10	
Barrier Layer	GDC	10	GDC	5	
Air Electrode (Anode)	LSCF-GDC	25	LCSF-GDC	25	
Cells per Stack	481		289		

Process flow diagram of "generic" SOE stacks fabrication using electrolyte-supported cells

Process flow diagram of "generic" SOE stacks fabrication using hydrogen electrode-supported cells

Key SOEC Manufacturing Processes

	Key Parameter/Attribute Affecting Cost	Other Parameter/Attribute Affecting Cost
Casting	Line speed Width	Capital Cost
Heat Treating	Number of Firings, Oven Size, Cycle time, Packing-Fraction/Plate-spacing, Yield	Capital Cost
Printing	Parts per cycle, Effective Cycle Time	
Sealing	Speed of application, Method of sealing (Heat Treat)	
Coating (e.g., MCO)	Method of application (PVD, thermal spray), Speed of Application	Post-application heat treatment
Plate Forming (Interconnects)	Method of Forming (stamping, laser cut), Cycle Time	Capital Cost

Other Processes

	Key Parameters/Attributes Affecting Cost
Ball Mill/Sifting	Batch Size Required particle distribution
Singulation/ Discretization	Type of Process:Laser cutting: cutting speedStamping: scoring, speed
Machining (endplates)	Amount of material to be removed Extent of "near net-shape" in forming process
Stack Assembly	Number of discreet parts to be placed Placement Accuracy required Handling difficulties (wet contact paste, fragile, difficult to grasp)
Etching (interconnects)	Etching-Time Depth-of-Etch Batch size

Typical Heat-Treating Steps

(Five separate Furnace Operations modeled in baseline systems)

Cell Construction	Firing	Maximum T (°C)	Total Cycle Time (h)	Gas Environ.	Oven Type	Notes
ESC		~1400	30			
		1200	18.4			
		1075	11.4		S/M/L	
HSC		~1400	30		Pusher Kiln	
		1200	18.4	Air		
		1075	11.4	Air		
Both		200	4.9	Air	Batch	Batch furnaces
Both						

Co-Firing is a key cost reduction strategy

STRATEGIC ANALYSIS, INC.

Pusher/Roller Kilns for High Volume

Tight Furnace Packing is a key cost reduction strategy but must not endanger Yield or Isothermal condition

Dimensions based on input from OneJoon (Germany) (Specialists in Roller/Pusher Kilns & Furnaces for SOEC applications)

- Saggers (boats or carts) used to convey parts
- Top & Bottom Setter Plates used to reduce/eliminate part warpage: Bot. Plate (most applic.), Top Plate (only on 1st firing)
- Spacers used to allow adequate air-flow for temperature uniformity and off-gas removal
- Holding trays (holding multiple parts) and are stacked vertically (up to ~0.5-0.7 m kiln vertical height)
- Kiln furniture lifetime: ~450 cycles with SiC/RxSC

Multi-cell firing (bundles of co-fired stacked cells without separators) would be an impactful cost reduction strategy

Pusher Kiln Specifics

Parameter	Units	Small	Medium	Large
Total Capital Cost (1400 °C maximum)	\$	\$1,079,989	\$1,411,603	\$4,720,840
Total Capital Cost (<1250 °C maximum)	\$	\$861,242	\$1,100,282	\$4,161,672
Number of parallel saggers in each furnace	#	1	2	4
Heated Cross-Sectional Area	cm ²	1,550	3,100	6,200
Heated Length	m	10.5	10.5	24.4
Power Consumption	kW	45	90	418
Loading & Unloading Robots Required	#	2	2	4
Laborers (FTE) during operation	#	0.25	0.25	0.25

- Based on price quotes from a US-based provider. Some details are withheld as proprietary.
- Parallel saggers used to increase capacity
- High temperature (1400C) about 115-25% higher cost then medium temperature (<1250C)
- Robots used for loading and unloading of parts
- At 2MW/year SOEC, 4 "large" pusher kilns are needed for Electrolyte Densification

Key features affecting cost:

- Peak temperature
- # of lanes
- Length
- Vertical height of isothermal zone
- Atmosphere
- Gas tightness
- Sluice/Double-door locks

Batch Furnaces Can be Economic if Large and Tightly Packed But require longer cycle times than continuous furnaces

Parameter	Units	Small Box	Large Box Furnace	
		Furnace		
Total Capital	\$	\$122k	\$660k	
Cost	Ŷ	ŶŦŹŹŔ	çooon	
Heated width	cm	17.8	152	
Heated length	cm	12.7	279	
Heated height	cm	84	152	
Average Power	kW	1.2	100	
Consumption				
Estimated Part	%	99.8%	99.8%	
Yield				

- Can achieve a competitive cost per part
- Like Pusher Kilns, tight parts packing is a key factor in cost reduction

Scaling of batch furnaces requires lengthened cycle

Source: OneJoon

https://www.onejoon.de/en/markets-materials/sinter-ceramicsand-metals/sofc-soec-scaling-from-batch-to-continuous-seriesproduction/

SOE TOTAL STACK COST

Electrolyte-supported Cells (EsC) H₂ Electr

- Dramatic cost reduction from 25MW/yr to 1 GW/year
 - Cost reduction above 500MW/yr is modest
- Material cost & Manufacturing cost are 80% of total cost
 - Manufacturing is ~50% at low production rates, Materials is ~ 50% at high production rates

SOE TOTAL STACK COST DISTRIBUTION

Excl. contingency

(Broken down by Processing Steps)

Electrolyte-supported Cells (EsC)

- Interconnect cost and Cell/Paste Slurries are the two dominant cost contributors
 - Both are primarily material cost contributions

SOE TOTAL STACK COST DISTRIBUTION

Excl. contingency

(Broken down by Processing Steps (showing sum of Materials & Manufact.))

Electrolyte-supported Cells (EsC)

SOE TOTAL STACK COST DISTRIBUTION

(Broken down by Processing Steps (showing sum of Materials & Manufact.))

1 GW/Year, \$/kW

Electrolyte-supported Cells (EsC)

H₂ Electrode-supported Cells (HEsC)

Excl. contingency

Excludes Material but includes manufacturing (capital amortization, tooling, labor)

Electrolyte-supported Cells (EsC)

H₂ Electrode-supported Cells (HEsC)

~5x cost reduction between 25MW/yr and 1GW/yr

Excludes Material but includes manufacturing (capital amortization, tooling, labor)

50 MW/Year, \$/kW

Electrolyte-supported Cells (EsC)

Excludes Material but includes manufacturing (capital amortization, tooling, labor)

50 MW/Year, \$/kW

Electrolyte-supported Cells (EsC)

Excludes Material but includes manufacturing (capital amortization, tooling, labor)

1 GW/Year, \$/kW

Most significant costs: (Same as 50MW/yr)

Electrolyte-supported Cells (EsC)

Electrolyte-supported Cells (EsC)

- (Only) ~2x material cost reduction is expected between 25MW/yr and 1GW/yr
- HEsC material cost significantly lower than EsC material cost
 - Primarily due to the power density improvement (900mW/cm² vs. 1500mA/cm², at 1.285V/cell)

Electrolyte-supported Cells (EsC)

Electrolyte-supported Cells (EsC)

TOTAL COST VARIATION WITH POWER DENSITY

- Improved current-density/power-density reduces stack cost (obvious)
- EsC and HEsC are very similar cost on a \$/cm² basis (less obvious)
 - Largest cost difference is that granted by an improvement in current density (HEsC 1500 vs. EsC 900 mA/cm²)

SOEC ADDITIVE MANUFACTURING OPPORTUNITIES

Additive Manufacturing vs. Conventional Multi-Step Processing

<u>Near-Net shape Additive Manufacturing</u>

- cost-effective automated manufacturing
- geometrically complex electrochemical ceramics laminations and devices (57% improvement in cell performance and in voltage degradation for corrugated layers)
- <u>Multiple Approaches</u> provide good surface finish and dimensional precision
 - Ink jet AM printing (most common in corrugated surface applications)
 - Stereolithography (SLA)
 - Digital Light Processing (DLP) for resin curing
- <u>Cost Competitiveness</u>: Total cost and the share of major cost categories vary by material, AM mfg. and material – Joule Printing for Ti AM

Source:

https://medium.com/@alexhuckstepp/economics-ofmetal-additive-manufacturing-f1efd17dce2d

SOEC ROLL-TO-ROLL MANUFACTURING OPPORTUNITIES

- <u>Roll-to-Roll manufacturing</u> facilitates is a costeffective streamlined continuous manufacturing route for solid-state electrochemical devices
- <u>Simultaneous multi-layer co-coating</u> (up to six layers at a time supported by DOE/AMO)
 - Enables finer-grained thinner films at a lower cost than laminated films
 - Cost-effectiveness of other major expensive process steps such as thermal treatment beyond the initial multi-layer coating step will be important for its overall economic viability

Current practice: Single layer slot or tape casting (knife)

Next generation: Simultaneous multilayer coating

<u>Source:</u> Peet, J. (2019). "Development of Roll-to-Roll Simultaneous Multilayer Deposition Methods for Solid-State Electrochemical Devices Using Highly Particulate Loaded Aqueous Inks,"," U.S. DOE Advanced Manufacturing Office Program Review Meeting, Washington, DC, June 11-13.

Possible Cost Reduction Strategies

(Process simplification, parts & step count reduction!)

- Sizing-Up
 - Higher Production Rates/Capacity (GW-scale)
 - Larger cell active area
 - Larger Stacks (>50kW)
 - Leverage existing SOFC manufacturing capacity
- Manufacturing/Process-Development
 - Multilayer/R2R printing of material layers
 - Co-firing/Reduced-number-of firing
 - Improved/Optimized Glass Seal Firing
 - Optimized cycle times and Tight Furnace Packing
 - Plasma Sintering (improv. energy effic., faster cycle
 - Larger Batch Sizes for materials processing/Heat Treatments (Continuous vs. Batch)
 - Rapid catalyst application/infiltration
 - Increased/Faster robotic handling

- Operations/Performance
 - Lower/Higher Pressure
 - Lower Operating Temp. for lower-cost metal alloys
 - Higher Power Density
 - Higher Steam Utilization
 - Lower/No Air Sweep Rate
- Balance of Plant
 - Compact/Low-Cost Heat Exchangers
 - Improved power electronics (inverters)
 - Higher voltage, higher efficiency
 - Lower cost SS alloy (rather than Nickel-based alloys)
 - Streamlined on-site installation
- Other
 - Oxygen sales
 - Grid capacity payments

Thank You!

Questions?

Brian D. James Strategic Analysis Inc. Bjames@sainc.com

