

Bulk Storage of Gaseous Hydrogen Workshop Surface Storage Feb-11th-2022

www.fibatech.com

1

Typical Hydrogen Refueling Station - HRS

Typical Gaseous Hydrogen Installations

HRS

HRS

Industrial

Typical Hydrogen Storage Pack Configurations

Designed to meet local Code e.g. seismic / wind loads etc

Vertical

Stackable Storage Possible

Pressure Vessels Classifications / Types

Pressure Vessel Types & Key Attributes								
Vessel Type	Туре І	Туре II	Type III	Туре IV				
Vessel Photos								
Vessel Descriptions	Constructed entirely of metal, typically steel. Range from small cylinders up to jumbo tubes.	Mostly metallic, consisting of 2 layers, an inner layer made of metal and an outer partial wrapping of cable or fibrous material, usually glass fiber composite.	A vessel consisting of a metallic liner (usually aluminum) and a fully wrapped composite shell. The composite material bears the majority of the pressure load.	An all-composite constructed vessel, consisting of a polymeric liner (usually high density polyethylene) wrapped with a carbon fiber or carbon/glass fiber composite shell.				
Typical Applications	Bulk transport and ground storage of industrial & specialty compressed gases and alternative fuels.	High pressure storage for compressed industrial gases and alternative fuels.	Special applications like medical, paint ball, fire fighting and aerospace along with storage for industrial gases and alternative fuels including on vehicle storage.	Special applications like medical, paint ball, fire fighting and aerospace along with storage for industrial gases and alternative fuels including on vehicle storage.				

Type I - Manufacturing

Type I - Manufacturing

Type II - Manufacturing

Typical H₂ Vessels Sizes and Capacities

ASME Type I – H_2 Refueling Stations with 3-Zone Cascade Module 500 , 700 and 1,034 BAR

Pressure		Len	igth	Water Volume		H2 Weight		H2 Payload	
Psi	Bar	Feet	Meters	Cubic Feet	Liters	Pounds	Kilograms	Cubic Feet	Cubic Meters
7,252	500	31	9.4	41.9	1,189	83	37.7	15,938	451
10,153	700	31	9.4	28.3	803	71.1	32.3	13,663	387
15,000	1,034	31	9.4	19.5	553	62.8	28.5	12,063	342

Demonstrated Benefit of Intermediate Zone With Cascading

Addition of a 700 BAR middle zone between 500 BAR and 1,034 BAR zones introduces system improvements:

- Allows cascading of more vehicles before compressor starts.
- Reduces min-max pressure range (stress intensity) within a cycle, increasing fatigue life of the pressure vessel.

<u>ASME Type I – other H_2 applications</u>

Pressure		Len	gth	Water Volume		H2 Weight		H2 Payload	
Psi	Bar	Feet	Meters	Cubic Feet	Liters	Pounds	Kilograms	Cubic Feet	Cubic Meters
2,800	193	38	11.5	97.6	2,765	88.6	40.2	17,022	482
4,000	275	38	11.5	90.9	2,574	112.2	50.9	21,540	610
5,500	379	38	11.5	57.8	1,638	92.5	42	17,771	503
8,000	551	38	11.5	31.8	902	67.7	30.7	12,995	368

ASME Type II / Composite

Pressure		Length Water Vo		/olume	ne H2 Weight		H2 Payload		
Psi	Bar	Feet	Meters	Cubic Feet	Liters	Pounds	Kilograms	Cubic Feet	Cubic Meters
	1,034	7	2.1	4.9	140	15.9	7.2	3,055	87
15.000		9.5	2.9	7.1	202	22.9	10.4	4,395	124
15,000		14.5	4.4	11.4	325	36.8	16.7	7,074	200
		18.5	5.6	14.9	423	48	21.8	9,216	261

Are Design Codes prepared for the H2-based economy?

ASME Code	Wall Thickness Design Rule	Safety Factor	Specific Rules for H ₂ ?	Fatigue Rules?	Mandatory material test in H ₂ ?
Division 1	Formula	3 App. 22(thicker)	No	No	No
Division 2	Formula	2.4	No	S-N Curves - Air	No
Division 3	Formula or Elastic- Plastic	Diameter ratio / thick shell theory	Yes - KD-10	Fracture Mechanics - FAD	Yes

Div.2 S-N Curve

Div.3 FAD

Are Design Codes prepared for the H2-based economy? USA, Canada, Europe, Japan, ISO

	Standard and code	country	Design Rule	Service life (Number of cycle)	Special requirements for H ₂ gas	
	AD 2000-Merkblatt	Germany	Prescriptive formula for minimum wall thickness	S-N approach	Considered through a safety factor of 10 on the number of cycles	
	EN 13445	EC	Prescriptive formula for minimum wall thickness	S-N approach	H ₂ isn't considered	
	ASME Section VIII, Div. 1/2	USA	Prescriptive formula for minimum wall thickness	S-N approach	H ₂ isn't considered	
	CODAP	France	Prescriptive formula for minimum wall thickness	S-N approach	Recommendations : max UTS ≤ 950 MPa (Low alloyed Steels)	
	ASME Section VIII, Div.3	USA	Prescriptive formula for minimum wall thickness or elastic-plastic analysis (according to KD-2)	Yes, depending on fracture mechanics calculations (according to KD-10)	Yes, through KD-10 article Crack propagation	
	KHK S 0220 Japan Follo		Follows the approach of ASME section VIII, Divs. 1, 2, 3	Design life based on fatigue analysis based on S-N curves and crack growth analysis similar to	H ₂ isn't considered	
	ISO11114-4InternationalCSA-CHMC1Canada		Not for design.	-	Selection of materials for Hydrogen use (3 methods)	
			Not for design.		Selection of materials for Hydrogen use (fatigue tests)	

H₂ Storage Vessel - ASME Div.3 Type I - 15,000 psi Monobloc Design

- First in the world. Product innovation achieved through NDE and surface finish techniques + material processing
- Life is not limited to 20 years. Life extension possible

- Demonstrated ability to detect small initial flaw sizes = longer life
- Fully meets the unique requirements of ASME Section VIII Division 3 and Article KD 10 for H₂ storage

Inside surface condition is critical to achieve detection of smaller notches / longer life.

Code Material Requirements (Test material in H_2 environment at high pressure)

No evidence of transition to stage III for K_{max} up to 40 MPa m^{1/2} in SA-372 Gr J steels

Measured K_{JH} values for SA 372 J in 103 MPa H_2 is > 40 MPa m^{1/2} requirement

Fatigue crack growth rate of SA-372 Gr. J steel in gaseous hydrogen 103 MPa SANDIA2018_8867PE Fracture Resistance (K_{JH}) as a function of tensile strength (S_u) for different pressure vessel steels PVP2019-93907

Hydrogen accelerates fatigue crack growth rates by 1.5 to 2 orders of magnitude relative to crack growth rates in air environment.

Fatigue crack growth rate relationships for SA-372 GR. J steel in 100 MPa hydrogen gas PVP2013-97455

Fatigue Crack Growth Rate for low Strength Pipeline Steels Sandia SAND2017-8212 PE

Fracture Mechanics Stages of Fatigue Crack Growth

Fracture Mechanics Stages of Fatigue Crack Growth

Fracture Mechanics ASME Div.3 approach to establish cycle life

Sample calculation – Inside surface crack

Inside surface crack

Finite Element Analysis - Model

True Stress / True strain curve generated for material modeling in cyclic service, considering strain hardening and large displacement theory

Monotonic True Stress - True Strain Curve

True Total Strain in/in

Finite Element Analysis - Model

Model Type = Axisymmetric or 3D depending on the analysis type

Finite Element Analysis - Results

Output from FEA used for:

- Elastic-Plastic Analysis
- Demonstrate protection against local failure (limit strain damage)
- Ratcheting evaluation (progressive incremental inelastic deformation or strain)
- Cyclic stress / Fracture mechanics
- Global loading (to check for external loads / events such as seismic, wind etc)

Thank You Questions?

Info@fibatech.com