Hydrogen Storage in Salt and Hard Rock Caverns

PREPARED BY: LANE POWER & ENERGY SOLUTIONS, INC

Caverns are Our Core EPC Business

Team Experience

☑ Hard Rock Caverns

- EPC of 13.5 MBbl in nine caverns
- Delivered the only hard rock caverns constructed in US in the last 35 years
- Reactivated two abandoned caverns for NGL service
- Converted 73 MBbl mine to crude oil storage (USDOE)
- ☑ Salt Caverns
 - \circ 100+ salt cavern projects
 - 25+ leach plants
 - One Hydrogen cavern (2015)

Storage Caverns Overview

☑ Fluids stored

- Gas & liquid hydrocarbons
- $\,\circ\,$ Compressed air
- \circ Hydrogen
- \circ Ammonia
- ☑ Solution mined salt caverns
 - \circ 60+ year operational history
 - $\,\circ\,$ 2000+ caverns worldwide
 - $\,\circ\,$ Six in H2 service
- ☑ Hard rock caverns
 - 60+ year operational history
 - \circ 200+ caverns worldwide
 - Demonstrated performance to 800 psi (at 1800' depth)
 - $\,\circ\,$ None presently in H2 service

Salt Caverns: Basic Design Requirements

Salt is physically and chemically inert and is effectively impermeable.

- \square Ample raw water source, e.g.
 - \circ Wells
 - \circ Surface waters
 - Plant effluent

☑ Competent salt

- Adequate depth, thickness & lateral setback
- Minimal anomalies (e.g. shear zones, insoluble interbeds)
- ☑ Brine disposal means
 - Subsurface wells
 - Offshore waters
 - Plant feedstock

North American Salt Deposits

Domal & Bedded Salt Caverns

Domal - US Gulf Coast (1-10 MMBbl & Larger)

Bedded - Midcontinent, NE US, Canada (100 – 1,000 KBbl)

Hard Rock Caverns: Basic Design Requirements

☑ Competent rock

- Adequate structural strength
- Minimal faulting and fracturing
- Low permeability (e.g. shale, granite, gneiss, limestone, dolomite, sandstone, chalk)
- Favorable and stable groundwater conditions
 - $\,\circ\,$ Adequate hydrostatic head
 - Ample groundwater recharge (natural or artificial)
- Physically and chemically inert to stored fluid

Hydrostatic Design Principle

- External groundwater pressure is greater than internal storage pressure
- Leakage mechanism is inwards into the cavern, rather than outwards from the cavern
- Applicable to both 'dry and 'wet' caverns

Global Hard Rock Cavern Inventory

☑ US:

- 83 constructed
- $\circ~$ 60 in service (LPG)
- Northern Europe:
 75 commercial (crude & LPG)
- ☑ Asia:
 - 24 strategic (crude & LPG)
 - 13 commercial (crude, light oil & LPG)

Existing H₂ Caverns/Conversion Potential

\blacksquare Existing H₂ caverns

- Teeside, UK. (3) brine compensated salt caverns
- \circ Texas. (3) domal salt caverns
- Convert existing salt caverns?
 - $\,\circ\,$ Well casings not suitable
 - Requires installing well liner or drilling a new well

ROM Cavern CAPEX

- Accuracy is +/- 30%.
- Solution mining rates: Appalachia - 250 gpm; Gulf coast – 2,000 gpm.
- Storage wells: Appalachia – 3/MMBbl; Gulf Coast - 1.
- Estimates exclude hydrogen surface infrastructure, include solution mining facility.
- Brine ponds are not necessary for dry gas storage.

	Depth (ft)	Max Pressure (psig)	Cavern Volume (Bbl)	Working Mass (mt)	Capex \$M
Hard Rock	2,000	800	1,000,000	626	\$133
	2,000	800	2,000,000	1,251	\$203
	750	300	1,000,000	223	\$109
	750	300	2,000,000	447	\$179
Gulf Coast Salt	4,000	3,400	1,000,000	1,997	\$79
	4,000	3,400	2,000,000	3,995	\$81
Appa- lachia Salt	5,000	3,400	1,000,000	1,846	\$82
	5,000	3,400	2,000,000	3,692	\$127

Hydrogen Storage Silo

- Dry or watercompensated storage
- Steel-lined, vertical shaft, 750 – 2000' deep
- Double dome head in bedrock
- Pressurized interstitial fluid
- Diameter, depth and number to suit volume requirements
- Water compensation offers 100% H2 withdrawal (no base gas)

ROM Cost – Compensated H2 Silo System

H₂ Silo - ROM Cost/Kg Incl Compensation Tank & Pump

6' dia (2500 psi) -8' dia (2000 psi) -10' dia (1500 psi)

Tim Reichwein, EVP & COO mcreichwein@lanepes.com (281) 635 - 5047

LANE POWER & ENERGY SOLUTIONS, INC

<u>www.lanepes.com</u>

