Overview of Integrated Pathway Analyses to Meet the Hydrogen Energy Earthshot Goal

Solutions for Today | Options for Tomorrow

NETL H₂ Production Systems Analyses

Current Studies

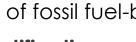
- Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies
 - NETL Internal Report <u>Complete</u>
 - Peer Reviewed Report Publication <u>In Progress</u>
- Hydrogen Energy Earthshot Initiative Screening Analysis In Progress

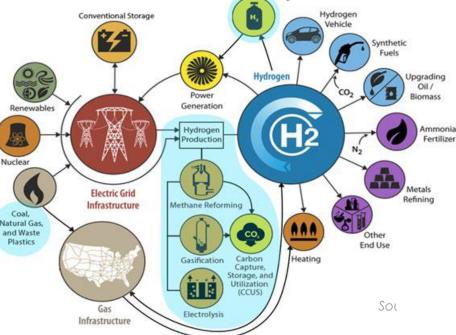
Project Summary

Objectives

- Develop a reference study of H₂ production technologies using current, commercial technologies¹ with emphasis on coal gasification, co-gasification of coal with an alternative feedstock, and NG technologies using the levelized cost of hydrogen (LCOH) (2018 \$/kg) as the figure of merit
- Identify areas of R&D to further improve the performance and cost ٠ of fossil fuel-based H₂ production, including follow-on analyses

Justification


Provide a baseline reference for DOE Office of Fossil Energy and • Carbon Management (FECM) R&D program planning to reduce the LCOH and greenhouse gas (GHG) footprint of future fossil-to-H₂ plants


Highlights

- Lowest LCOH of cases examined w/ carbon capture and storage (CCS) is auto-thermal reformer (ATR) \$1.58, ..., ...,
- Lowest LCA GHG profile of fossil-only cases examined w/ CCS is coal gasification 3.9 kg $CO_2e/kg H_2$
- Co-gasifying 43.5 wt.% biomass with coal enables net-zero GHG H₂ production
- NG supply chain and grid electricity are significant contributors to LCA GHG emissions of reforming plants w/ CCS

¹ Commercial technologies are considered process systems that do not face fundamental R&D challenges within the plant flowsheets considered and at the scales studied

Note: Project initiated September 2020

Hydrogen

	NATIONAL ENERGY TECHNOLOGY LABORATORY	

Case	Plant Type	Feedstock(s)	Reformer Type	Gasifier Type	CO ₂ Capture ^A	H ₂ Purification	Hydrogen Production Capacity	Lifecycle Emissions Target (kg CO ₂ e/kg H ₂)
1	Reforming	Natural Gas	0%	SMR		200 MMSCFD		
2						(Single Train SMR Max)		
3					94.5%	PSA	274 MMSCFD (Match H_2 output of Cases 4 and 5)	N/A
4	Gasification	Coal (Illinois No. 6)	-		0%	274 MMSCFD (BBR Rev. 4 Case B1B		
5				Shell	92.5%			
6		Illinois No. 6/Torrefied Woody Biomass			92.6%		55 MMSCFD (1,400 tpd gasifier feedstock) ^B	0

^ACO₂ capture targets the maximum amount of feedstock carbon captured from the syngas (ATR and gasification cases) and syngas + furnace flue gas steam methane reformer (SMR) case

^B The smaller-scale co-gasification case reflects the feedstock capacity of the Buggenum IGCC facility

General Evaluation Basis

- Performance and economic modeling conforms to the 2019 revision of NETL's QGESS reports:
 - $\circ~{\rm CO_2}$ Transport and Storage
 - CO₂ Purity
 - Cost Estimation Methodology
 - Capital Cost Scaling Methodology
 - Energy Balance
 - Feedstock Specifications
 - Fuel Prices
 - Process Modeling Design Parameters
 - Techno-Economic Analysis
- Transparent, consistent, highly-detailed analysis methodology

Quality Guidelines for Energy System Studies (QGESS)

Feedstock/Byproduct Pricing

Site-delivered feedstock prices (2018\$)

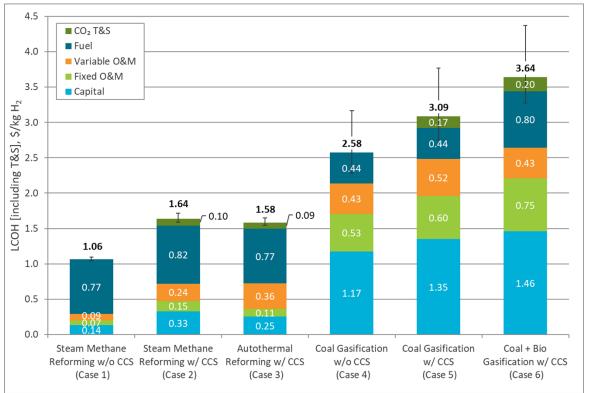
- Natural Gas, levelized
 - -\$4.42/MMBtu (HHV basis)
- Coal (Illinois No. 6), levelized -\$2.23/MMBtu (HHV basis)
- Woody Biomass (torrefied, non-pelletized), levelized —\$5.43/MMBtu (HHV basis)
- Grid Electricity (Imports and Sales)
 - -\$71.7/MWh 2019 MISO average industrial consumer price
 - -Only coal + biomass gasification sells electricity, <1 MWh/day

• No revenue from the sale of export steam

H₂ Product Purity

Characteristics	Concentration	
Hydrogen Purity (vol%)	99.90	
Max. CO ₂ (ppm)	А	
Max. CO (ppm)	А	
Max. H ₂ S (ppb)	10	
Max. H ₂ O (ppm)	А	
Max. O ₂ (ppm)	A	

^AThe maximum total concentration of all oxygen containing species is 10ppm


- The hydrogen product meets the purity specification shown, which results in a product suitable for several potential applications
- Contaminant levels are for ammonia-grade H₂ to avoid catalyst poisoning
- Additionally, the specification results in a product exceeding specifications for the following ISO 14687:2019 gaseous H₂ grades:
 - Grade A combustion applications
 - Internal combustion engines, residential/commercial heating appliances
 - Grade B industrial power and heat applications
 - Excluding PEM fuel cells
- H₂ product is compressed to 925 psig for pipeline injection

Results (Pending Peer Review)

- Lowest reforming cases SMR w/o CCS (\$1.06/kg H₂)
- Highest reforming case SMR w/ CCS (\$1.64/kg H₂)
- Lowest gasification case coal w/o CCS (\$2.58/kg H₂)
- Highest gasification case "net-zero" coal/biomass (\$3.64/kg H₂)

Global Warming Impact Factors (100-yr, with climate feedback)

- U.S. Electricity, 2016 National Average Profile: 590 kg CO₂e/MWh
- Production and Delivery, Cradle-to-city gate: 0.99 kg CO₂e/kg NG
- Bituminous, Transport Distance (MRO Average): 0.19 kg CO₂e/kg of coal
- Torrefied, non-pelletized SRWC: -0.72 kg CO₂e/kg AR biomass
- CO₂ Management, saline aquifer: 0.02 kg CO₂e/kg CO₂ sequestered

S1 Announcement

ENERGY.GOV

SCIENCE & INNOVATION

TION ENERGY ECONOMY

SECURITY & SAFETY

SAVE ENERGY, SAVE MONEY

Department of Energy

Secretary Granholm Launches Hydrogen Energy Earthshot to Accelerate Breakthroughs Toward a Net-Zero Economy

JUNE 7, 2021

\leq
f
У
in
P

Home » Secretary Granholm Launches Hydrogen Energy Earthshot to Accelerate Breakthroughs Toward a Net-Zero Economy

First Energy Earthshot Aims to Slash the Cost of Clean Hydrogen by 80% to \$1 per Kilogram in One Decade

WASHINGTON, D.C. – Secretary of Energy Jennifer M. Granholm today launched the U.S. Department of Energy's (DOE) Energy Earthshots Initiative, to accelerate breakthroughs of more abundant, affordable, and reliable clean energy solutions within the decade. The first Energy Earthshot– Hydrogen Shot–seeks to reduce the cost of clean hydrogen by 80% to \$1 per kilogram in one decade. Achieving these targets will help America tackle the climate crisis, and more quickly reach

https://www.energy.gov/articles/secretary-granholm-launches-hydrogen-energy-earthshot-accelerate-breakthroughs-toward-net

Key Details:

- \$1/kg H₂
- One decade (i.e., 2030)
- "1, 1, 1"

1 Dollar

1 Kilogram

1 Decade

https://www.energy.gov/eere/fuelcells/hydrogen-shot

Identify potential pathway scenarios to meet the Hydrogen Energy Earthshot 2030 production cost and (informal) emissions intensity goals via screening analyses

- Opportunities for holistic reductions in production cost and life cycle emissions will be critically reviewed
- Both natural gas and waste coal primary feedstocks will be evaluated
- Advancements to contemporary commercial technologies (e.g., SMR, ATR, gasification), advanced technologies (e.g., reforming, pyrolysis, etc.), unit siting choices, the application of biofuels, and finance assumptions at a minimum will be considered
- VRE-based H₂ production pathways will be examined for comparison purposes

Provide an informed framework for FECM H_2 R&D

- Screening-level analyses intended to be performed quickly
- Pathway scenarios to guide program R&D
- Facilitate office and programmatic communications with stakeholders

Project Approach

Five (5) Tasks:

Task 1: Establish baseline

- Ongoing H₂ baseline work and other contemporary estimates available
- Summarize key process information (including LCA data)

Task 2: Literature review/information gathering on advanced H_2 production

- Consider both current commercial and advanced (future) H₂-production technologies
- Summarize detailed descriptions, flow diagrams, performance/cost data, strengths/weaknesses, etc.

	Process	Markets	LCA	Sub Surface
Task 1	+		•	
Task 2	+		•	
Task 3	•	+	•	•
Task 4	+	•	•	•
Task 5	‡	•	•	•

‡ = Lead; • = Support

Task 3: Additional options for improvements (cost and emissions)

 Plant Siting, Process Intensification, Financing and Byproduct Sales, Biofuels, CO₂ Transport and Storage costs

Task 4: Exploratory analyses to identify candidate pathways

- From Tasks 2 and 3, identify/propose pathways, summarize design basis and assumptions, estimate H₂ production costs and emission intensities
- Down-select 4-6 scenarios for detailed analyses

Task 5: Final analyses, presentation, and whitepaper

- Refine analyses on 4-6 down-selected scenarios
- Conduct sensitivity analyses

Project Timeline:

• September 2021 – February 2022

ΔΤΙΟΝΔΙ

HNOLOGY

The authors would like to thank Justin Adder, Peter Balash, Luciane Cunha, David Miller, David Morgan, Chris Nichols, Tim Skone, Nate Weiland, Jadon Grove, Matt Jamieson, Joe Marriott, Shannon McNaul, Bob Wallace, Travis Warner, and Mark Woods for their support and assistance in performing this work.

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

0

@NationalEnergyTechnologyLaboratory

Travis Shultz Travis.Shultz@netl.doe.gov Eric Lewis Eric.Lewis@netl.doe.gov

