

High Performance UV-C LEDs and Their Applications

Jianping Zhang, Ying Gao, Frank Harder and

Ling Zhou* (presenter)

Bolb Inc.

Livermore, California

© BOLB Inc. 2022

- Founded in 2014, production facility located in Livermore, California
- World's only UVC LED manufacturer utilizing emission-transparent epi since 2017.
- Bolb's in-production UV-C LEDs are more than twice as efficient as the nearest competitor
- Bolb products enable new and innovative disinfection solutions for air, water and surface applications

Topics Covered

- High performance UVC LEDs:
 - Past approaches to reduce p-side optical absorption
 - Bolb's approach and results
 - Importance of packaging in market success
 - Looking ahead
- UVC LED Applications:
 - Examples: Air, water and surface disinfection
- Summary

Deep acceptor level in AlGaN

P-GaN as p-contact layer

Low LEE (2-5% for FSS)

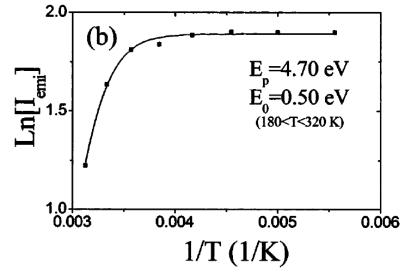
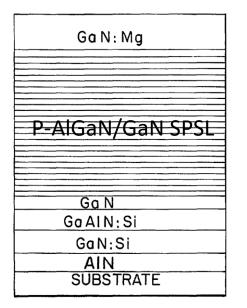
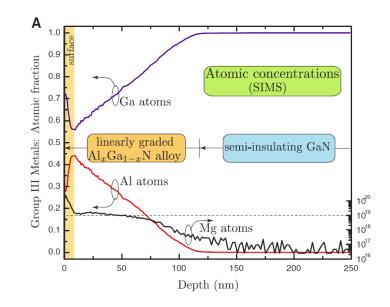
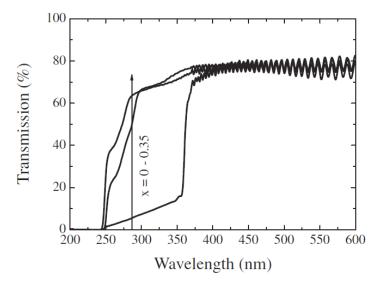


FIG. 2. The Arrhenius plots $[\ln(I_{emi}) \text{ vs } 1/T]$ for two emission lines in Mg-doped AlN: (a) 4.70 eV at T < 150 K and (b) 5.54 eV at T > 150 K. The solid lines are the least squares fits of data with Eq. (1). The fitted activation energies (E_0) are indicated in the figure.


K. B. Nam et al APPLIED PHYSICS LETTERS 83, 878 (2003)

- Practical high power (> 100mW@350mA and Vf<7V)
 UVC LEDs only started appearing within the past 2-3 years on the market
- Major technology challenges:
 - Low carrier concentration in high-Al% structures
 → low light extraction efficiency from absorbing p-GaN
 - Trapped TM polarized light
 - Lack of high reflectivity contacts in UVC band
 - High temperature annealing required for N ohmics
 - Lack of suitable UVC-transparent packaging material

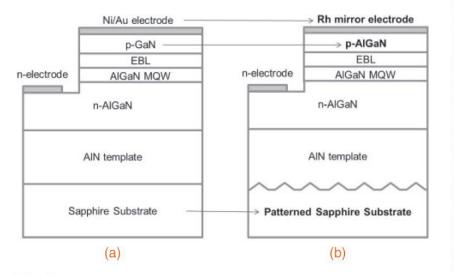

Early efforts to replace p-GaN


P-AlGaN/GaN SPSL

Compositionally-graded P-AlGaN

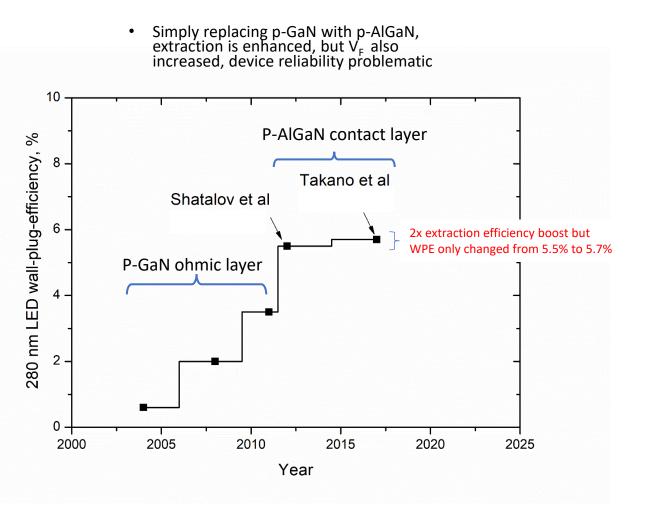
P-AlGaN

Fig. 1. Optical transmission spectra of DUV LED structures with different compositions of p-AlGaN layer.


M. Razeghi, US patent No. 5,831,277

J. Simon, et al, Science 327, 60 (2010)

M. Shatalov, et al, Applied Physics Express 5, 082101 (2012)



Dilemma: More light or Practical working voltage?

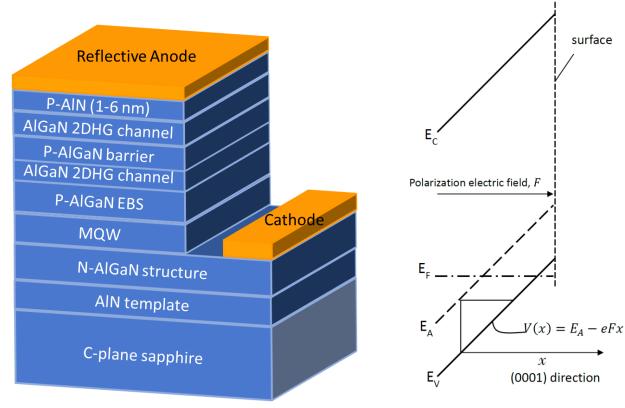
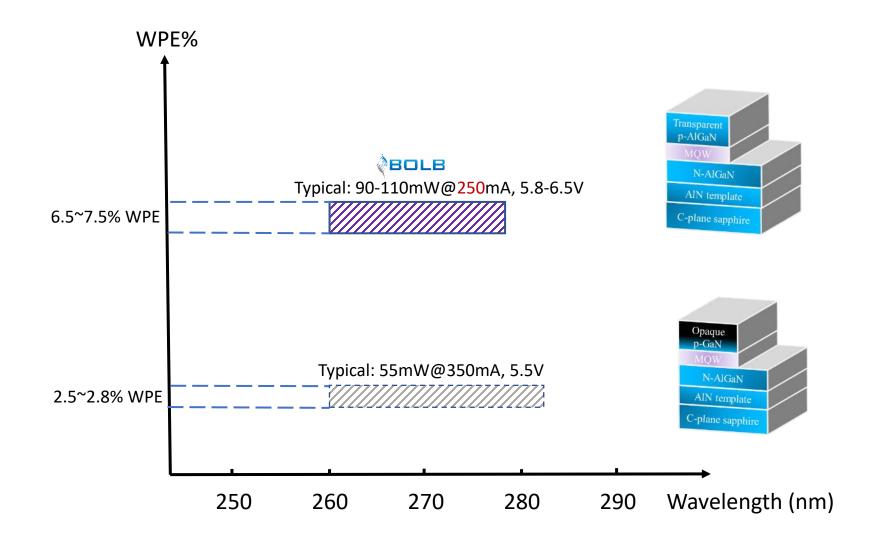


Fig. 1. Schematics of (a) conventional and (b) novel UV-LED structures. In the novel UV-LED structure, we introduced a transparent p-type AlGaN:Mg contact layer, a Rh mirror electrode, a PSS, and encapsulation resin.

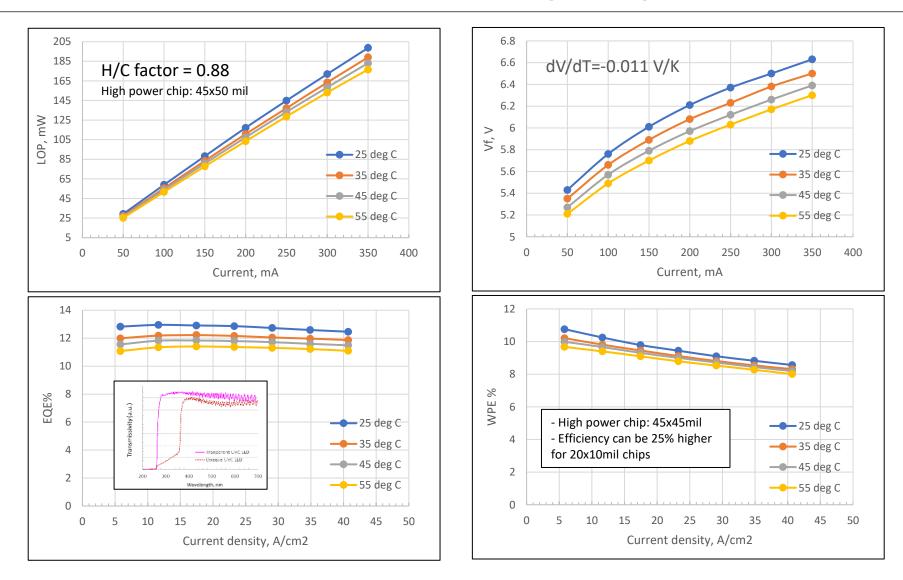
T. Takano, et al, Applied Physics Express 10, 031002 (2017)

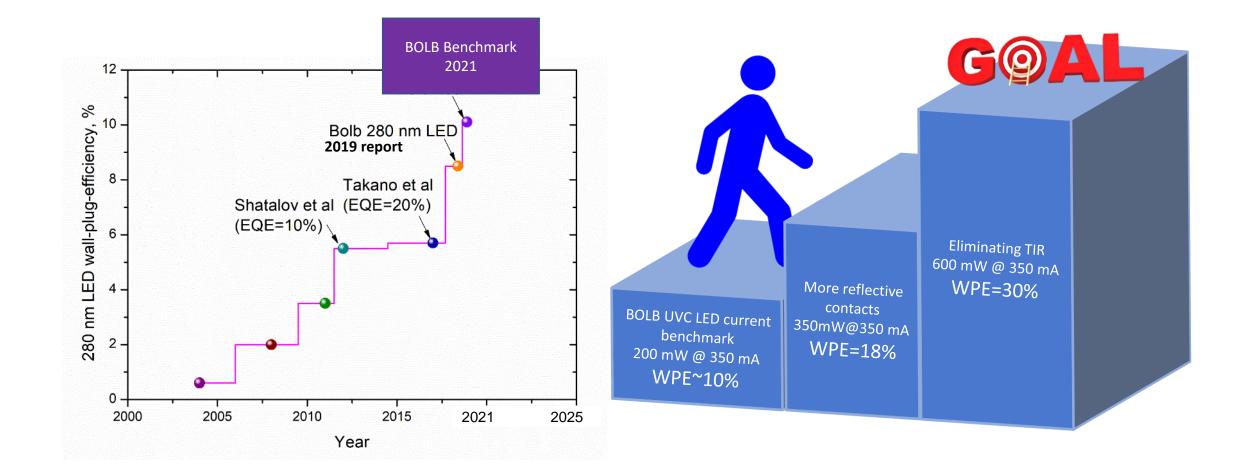
Reference: "Surface hole gas-enabled transparent deep ultraviolet light-emitting diode" by J. Zhang et. al., Semiconductor Science and Technology, Vol. 33(7), June 2018


surface

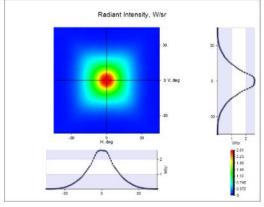
- Use a strained thin p-AIN cap layer Ο
- Creating a very high charge density on AIN surface Ο
- Very high piezoelectric and spontaneous fields enhance Ο tunneling probability

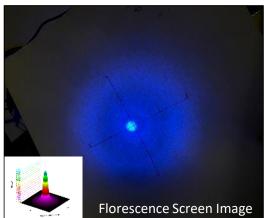
Result:


- P ohmic contact without annealing on high-Al% 0 material
- Get high transparency AND good working voltage Ο
- Lifts efficiency ceiling by >10x Ο



200mW @ 350mA, 273nm Packaged Single LED


Packaging for UVC LEDs



- o Common requirements
 - o High UVC transparency or reflectivity
 - High thermal conductivity
 - Must handle 8~10x thermal load at the same current vs. visible LEDs
 - Severe derating at higher temperature due to poorer carrier confinement
 - Lifetime issues
 - Long term packaging degradation under UV (e.g. transparency, color and adhesive properties)
- Application specific:
 - Wide beam: wider coverage, reduce shadow;
 - Narrow beam: target specific area, reduce light escape

Type of Secondary Optics on	Single LED	Irradiance	at Distance
SMD6060 274nm LED	Flux@350mA	1 mm	10 cm
	mW	mW/cm²	mW/cm²
Bare die	112.0	144.6	0.31
Bare die + SMD Reflector	96.5	228.5	2.43
Hemisphere	154.0	194.4	0.42
Hemisphere + SMD Reflector	123.7	265.0	3.20
Aspherical Lens	144.9	375.7	1.13
Compound Lens	136.1	676.5	1.23

• Requiring "Watt for watt replacement" of Hg lamps is <u>WRONG</u>

• High irradiance achievable on target outclasses mercury lamp with 50x input power

- Huge implications for efficient water and air treatment applications
- For bio-sensing applications: >2W/cm² radiance possible with pulsed current drive

BOLB's UVC LED 1x12 arrays and 5x5 arrays deployed during initial wave of the SARS2 pandemic for disinfecting high-touch surfaces for "refreshing" PPE

Test examples Against HCov-229E ssRNA human coronavirus on flat surfaces

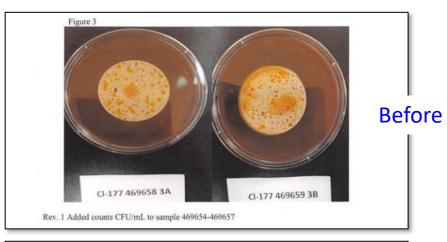
- Single-emitter *99.995%* Kill in 15 seconds from 10 cm away
- 25-emitter 99.995% kill in 2 seconds from 20 cm away; 60 seconds from 1 meter away (coverage 1 meter dia.)

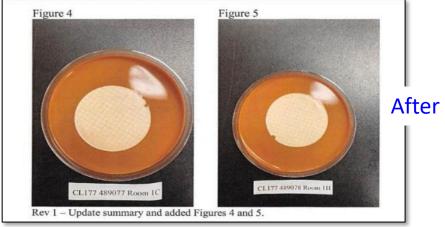
Against SARS-Cov-2 ssRNA virus on porous surfaces

(courtesy UC Berkeley and others)

• *99.9~99.999%* Kill in 5~10 min for outer shell of N95 mask

Application Examples: Aerosol Treatment





Model	LED Array 100+/-10 mW each @ 250mA	Air Flow L/min (CFM)	Single Pass Efficacy	30 m ³ Volume Efficacy 60 min
Floor Unit (Cylinder)	25 LEDs	3000 (107 cfm)	99.96% Staph aureus ATCC-6538	99.94% HCoV-229E ssNRA Virus MRC-5 host
Ceiling-mount Unit	24 LEDs	8400 (300 cfm)	/	99.6% Staph aureus ATCC-8032

Potential Energy Savings by Reducing Mechanical Filtration Requirements

BOLB Single-emitter Reactor Water Treatment Tests

Flow Rate		E. coli Reduction Rate		
LPM	GPM			
1.5	0.40	> 99.999%		
5	1.32	99.999%		
15	3.96	99.75%		
20	5.28	97.52%		

- WPE ceiling imposed by an optically absorbing cap layer has been broken
- Demonstrated output beyond 200mW@350mA per emitter
- Rapid progress in LED performance is expected through further light extraction enhancement
- High-power UVC LEDs are already practical in many applications
- Beam-shaping secondary optics at package level enables far more efficient air and water treatment reactor designs compared to Hg lamps, mitigating cost disadvantage and enables new applications

Contact: INFO@BOLB.CO