Display Power Trends

Stefan Peana

Dell Technologies Office of the CTO 1/12/2022

EXPERIENCE INNOVATION GROUP TECHNOLOGY STRATEGY

Introduction

Display power assessment:

• 30% ~ 40% of notebook (*) power is consumed by the display

- LCD the backlight vs driving circuit 2:1 ~ 5:1 (size, resolution, brightness). YOY rate of change is ~ 3% driven by light source efficiency increase - OLED power is consumed by the emissive material and driving circuit. Nominal power improvements is driven by generational material changes

Display performance requirements:

- HDR eco-system requirements DCI-P3, 4K resolution, 1,000 nits brightness, image refresh rates
- Color Calibration, image quality, social media

Note:

Display power reduction potential:

- system level telemetry (ALS+C, distance, presence, etc.)
- system level AI optimization (AC/DC, image legibility vs power, foveated image processing, refresh rate optimization, etc.)
- sustainability goal (power saving with net zero performance loss)

Observations:

 Power testing standards such as: "Mobile Mark/Video Play Back/Wireless Web Browsing" does not cover soft power gain/loss – need new power metric

EXPERIENCE INNOVATION GROUP TECHNOLOGY STRATEGY

Notebook data is used for this analysis Emerging displays power consumptions are estimates

Display Technology Evolution

1: Least favorable 5: Most favorable

Watarea teennologies							
Туре			Transmissive		Self Emissive		
	Attributes		⇒ Mini-LED =⇒	QLED/QDCF		QD-EL	Micro-LED
	Visuals	2	4	3	5	5	Potentially Better
	Brightness	4	5	4	3	4	Potentially High
	Dynamic Range		5	4	5	5	Potentially High
	Power	2	3	4		3	Potentially lower
	Response		3	3	5	5	Potentially Better
	Thin & Light	3	3	3	5	5	Potentially Thin
	Flexibility				5	5	Potentially Flex.
	Cost of ownership, Capex	Very low	Low	Low	Medium	Medium	Very High
	PC Segment Coverage	All	Desktop PC, Laptops - Creator, Mac (rumor)	Desktop PC, Laptops	Primary Mobile, Laptop PCs, TV	OLED compete	AR/VR, Watch Mobile sizes (R&D)
	R&D, Dev., MP	MP	MP		Rigid & Plastic – MP FOLED – Dev.		Early R&D
	Small/Medium/Big players	Several	Several	Several	SDC, LG, BOE, EDO, Sharp		

Maturad tashnalagias

Source: Business Conference, SID 2021 DSCC

- LCD mature display essential to PC business with limited future opportunity due to lack of research investment
- OLED unique opportunity due to substrate flexibility and future large printing format
- μLED will add extra performance improvements beyond OLED
- Display tech selection is based on power vs differentiated opportunity (LCD, Mini-LED, OLED and μ-LED)

NOTE:

- Updates made to the display technology matrix presented at the SID 2021 Business Conference - Power - LCD has little improvement options. Mini-LED and QDCF have great future power potential

Emerdind areas

- Thin & Light - 2D Mini LED Backlight thickness approaching conventional LCD backlight

- QLED/QDCF - May need additional R&D time

- Lifetime - OLED, QD0EL, QDCF have similar lifetime issues

Conventional LCD vs 2D-BL LCD vs QD 2D-BL LCD power comparison

QD 2D-BL LCD emits threefold light, compared to conventional OLED

* Originally proposed in US-Patent 5,926,239 (Filed Nov. 22, 1996)

EXPERIENCE INNOVATION GROUP

NOTE: Assumed LCD DCI-P3 color, 15.6" UHD, at 400 nits max Display on at 100%

DCLTechnologies

© Copyright 2021 Dell Inc.

Conventional OLED vs QD-OLED power comparison

QD-OLED consumes around **double (x 1.8)** power, compared to conventional one.

** Efficiency of B-OLED is about 1/3 of the other colors.

EXPERIENCE INNOVATION GROUP TECHNOLOGY STRATEGY NOTE: Assumed OLED DCI-P3 color, 15.6" UHD, at 400 nits max Assumed display on 100%

D&LLTechnologies

© Copyright 2021 Dell Inc.

Display technologies power target comparison

LCD display power reduction progression: Global BL LCD → 2D-BL LCD → QD 2D-BL LCD → µ-LED

Estimated power (W)	Global BL LCD *	2D-BL LCD *	QD 2D-BL LCD	µ-LED Display	OLED *	QD-OLED
Input power for emission	5.5	5.6	1.8	0.4**	7.6	13.6
Input power for driving	1.0	1.0	1.0	0.4***	2.5	2.5
Total power	6.5	6.6	3.8	0.8	10.1	16.1
Assumptions and Calculations	Display specification used: 15.6inch, UHD, 400nit, DCI-P3, display on100%. Assumed 100% QD Conversion efficiency (Although recent data show 60% ~ 80%) (*) Measurement data (*) µ-LED calculation: Assume LED Lambertian illumination output 100lm/W LED which will be 100/3.14 nits/W or (100/3.14/5) 6.37nits/0.2W (as 7 nits/0.2W for 1m ² 6.37/0.07 = 91 nits/0.2W at 100 OPR% so at 50% it will be 182nits/0.2W Each LED using micro-lens to double to brightness output as it will focus the light to the viewer 4K 24 Millions pr-LED - 12 Millions for half display Vf = 2.8V is the same across R, G, B LEDS 0.2W ÷ 12M LEDS = 1.66x10^{-8} W/LED (1.66x10^{-8} for LED)/2.8 V = 5.95x10^{-9} A (5.8 nano-A each LED) Assume DC current at 100% duty however we will use a PWM with a duty of 6msec/1sec yielding 0.001 mA/LED (***) w/ micro-driving IC chips, target data. Use a micro-IC driver + controller in proximity to the LEDs (parasitic capacitance reduction) Assumed that the driver power is equivalent to the LED's power consumption plus overhand					

Efficiency Gain from Cell Structure Design

- For flat structure lights get trapped within the encapsulation layer
- For cell structure additional light is directed upwards resulting in 15% on axis (0 deg) luminous intensity increase
- Cell structure help maximize light output efficiency and LED reduction

Cell Structure

Efficiency +15%

EXPERIENCE INNOVATION GROUP TECHNOLOGY STRATEGY

D&LLTechnologies

Power Loss Reduction from the System's Perspective

TECHNOLOGY STRATEGY

- It is important to consider power loss reduction from a system's perspective in order to bring out the full potential of the LCD w/2D-BL by achieving a higher peak brightness
- The ideal method of reducing the system power is by integrating the driving system onto the substrate of the 2D-BL

© Copyright 2021 Dell Inc.

Power summary and recommendations

Power consumption of Display Modules

Power Summary:

Power reduction across technologies:

\checkmark	Global BL LCD = 6.5W	100%
\checkmark	2D-BL LCD - 6.6W	100%
\checkmark	QD 2D-BL LCD - 3.8W `	- 52%
\checkmark	μ -LED = 0.8W	- 12%

Emissive µ-LED key to realizing future optimum high performance low power display

- 88% power consumption

Transitional technology such as 2D-BL LCD will help resolve fundamental assembly challenges in support of future µ-LED display - LED chip assembly process and interconnect technology

The addition of QD material to 2D-BL LCD will improve display performance and material reliability need it for µ-LED display

- color uniformity, leakage, reliability, and deposition process

EXPERIENCE INNOVATION GROUP

TECHNOLOGY STRATEGY

