Ultra-Violet C-band (UVC) LEDs for Germicidal / Virucidal Applications

Mike Krames, PhD, FIEEE, FIES Arkesso, LLC

UVC LED Challenges

*Quantum Well

Krames, (2020) LEDs Magazine Vol. 17, No. 6, pp. 36-39

UVC LED Roadmap

UVC LED entitlement:

IQE	C _{ex}	Electrical		WPE*
80%	70%	90%	:	~ 50%

- 10x improvement in UVC LED efficiency is entitled
- Rate of progress as for blue LEDs \rightarrow 50% WPE by 2030
- Approaching ~ \$1 per Watt
- Enables dramatic reduction in both initial and operating costs

Upper Air GUV using Hg-Lamp Fixtures

Lamp Watts	Lamp UVC (W)	Fixture UVC (W)	Optical Eff.	Total Eff.
36.0	12.6	0.22	1.7%	0.6%
25.0	8.8	0.62	7.1%	2.5%
26.7	9.3	0.60	6.4%	2.2%

Source: CIE TC 6-52

Typical Hg-lamp louvered fixture for upper-room UVGI.

Hg-lamp Upper Air GUV consumes ~3x more energy than LED lighting!*

Importance of Radiance ("Brightness"): Etendue (A· Ω)

*Philips TUV 25W 1SL/25

25 W Hg lamp* Fixture	W Hg lamp* Upper-Air GUV Application	
	Single fixture, 2020	
2.8%	wall-plug efficiency	5.0%
25	electrical input (W)	14
-	energy savings	44%
1	no. sources	5 (\$\$)
	Single fixture, 2030	
2.8%	wall-plug efficiency	50%
25	electrical input (W)	1.4
-	energy savings	95% 🗸
1	no. sources	1 🗸

**6060 SMD UVC LED Source: Bolb, Inc.

Who Remembers Cold-Cathode Fluorescent Lamps?

- White LED cost in 2010:
 - \$20 per klm
 - \$6 per Watt
- Hg-based Cold-Cathode
 Fluorescent Lamps (CCFLs):
 - < \$1 per klm
 - < 30¢ per Watt</pre>
- Conclusion: a <u>20x</u> cost advantage could not save CCFLs from LEDs

TV Shipments by Technology (circa 2012)

https://www.digitaltvnews.net/?p=21931

Wavelength Dependence and "Far UV"

- Best "Far UV" LEDs now ~0.2%
 WPE
- Light extraction modeling shows
 >10x can be attributed to opaque p-layers
- Due to TM vs TE dipole radiation pattern (bandgap driven)
- In the future, 222 nm UVC LED WPE ~ 25+% may be possible, and would exceed KrCl lamp performance

after Krames, (2020) LEDs Magazine Vol. 17, No. 6, pp. 36-39

Questions?

Arkesso, LLC

Palo Alto, CA www.arkesso.com info@arkesso.com

Disclosure: Client companies of Arkesso include those active in the UV-C LED space.

© 2015-22 Arkesso, LLC. All rights reserved.

Krames • US DOE SSL R&D Workshop 2022