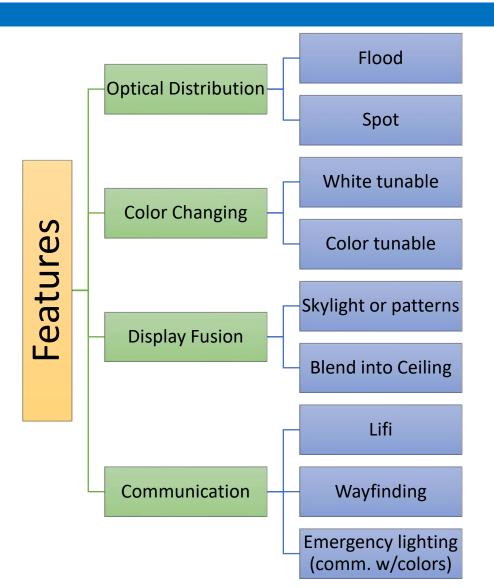
NEW FRONTIERS OF LIGHTING

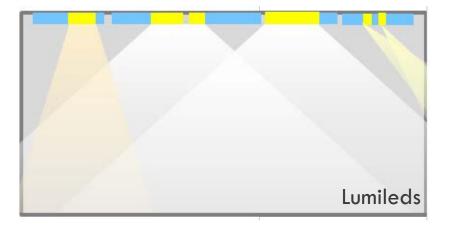
DOE SSL WORKSHOP

Move Beyond Legacy Form Factors

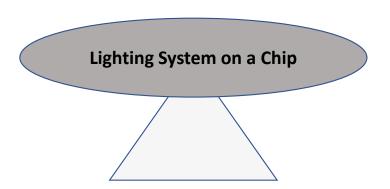
Light Fixtures LED Packages

Installations




Mass Customization

- Customize the lighting products for the needs of the space
 - Create lighting by the lighting requirements not by combining legacy product form factors to reach this performance level.



New Lighting Approach

- A lighting photonic integrated circuit (PIC) can create a 'lighting system on a chip' for integration into buildings
- "Print on demand" model must be amenable to create configurable semiconductors

Photonic Integrated Circuit for Lighting

A semiconductor foundry model:

Scalable: 300mm silicon

Low cost: automated wafer fab

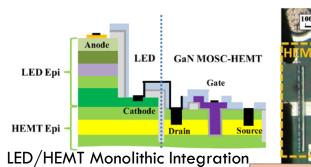
Reliability: integrated semiconductor devices

Lighting PIC Technology

Technology Elements

Optical/Electrical Integration

Pixelated Light Source


Optical Control

Communication & Sensors

Full Color Tunable Spectrum

Package Innovation

Potential Technologies

Planar Magnetics

Optical-Electrical Integration

Driver & LEDs: GaN power electronics + InGaN LEDs integrated on chip, planar magnetics

▽ LED

HEMT

Communication & Sensors

Lifi, sensor integration at chip/package scale, optical multiplexing

Full Color Tunable Spectrum

Microresonator

μLED Array

Architecture

Micro/mini compatible phosphors or QDs, optical

Pixelated Light Source

Micro/mini-LEDs integration

with CMOS, spatial

distribution of optical

frequency combs

frequency combs

Optical Control

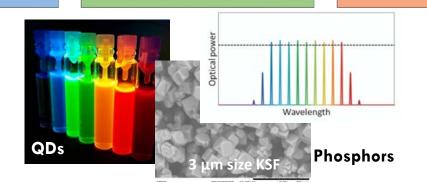
LED source with digitally

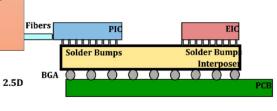
addressable pixels

Optical

Frequency Comb

Diffusers and beam control, metasurfaces for beam

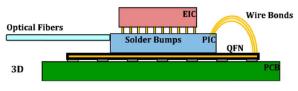

Projection

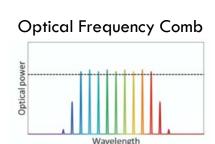

illumination lens

steering

Package Innovation

3D package integration or chiplets, silicon photonics approaches


Metasurfaces


Functional metasurface LED

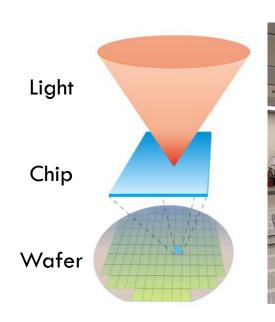
(beam deflection)

Bragg RCLED

with Si Metasurface

Lifi

<0.01mm² Area 0.1~1mm2 Limiting factor $\tau_{RC}(\sim 1 \text{ ns})$ $\tau_{carrier}(\sim 0.1 \text{ ns})$


μLED

~10 MHz <1.5 GHz Bandwidth

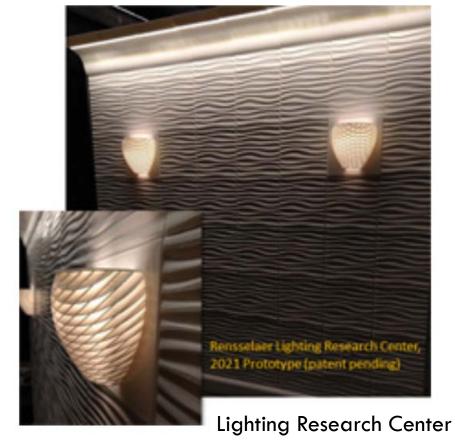
Lighting PIC Wafer Fabs

NEWS

NXP Opens New Advanced GaN Fab in Arizona

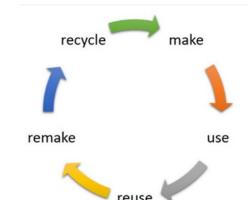
Cree, NY State Form \$1B Partnership To Create World's Largest

Silicon Carbide Device Facility


More than 600 Cree jobs will be created at the Marcy Nanocenter on SUNY Poly Campus in collaboration with the New York Power Electronics Manufacturing Consortium.

Print on Demand

 Additive manufacturing can be leveraged for integrating the lighting system on a chip into building materials


Sustainable Manufacturing

- Make every component of a lighting system recyclable, reusable, and free of harmful chemicals
 - Eco-friendly designs with low-embodied energy materials, recycled materials, or bioderived materials.
 - Design for deconstruction to disassemble and recycle.
 - > Provide materials transparency through certification bodies.

Circular Economy

-10 Interior Performance: COPH Standard Method v1.2-2017

