Accelerating Inorganic Phosphor Development

Acknowledgements

McElrath post-doctoral fellow

Dr. Martin Hermus (now at OSRAM)

Graduate Students

Dr. Ya Zhuo (Now at UCSB) Shruti Hariyani Dr. Anna Duke (Now at Sandia Nat. Lab)

(E-1981)

(CAREER 1847701) (1R01AR072742-01) (DMR 1911311)

UNIVERSITY of HOUSTON

TEXAS CENTER FOR SUPERCONDUCTIVITY

2020 Sloan Research Fellows

Phosphor converted solid-state (LED) lighting

LED + yellow phosphor

White LEDs use a blue (450 nm) or near-UV (405 nm) that is partially converted by a phosphor.

The combination of the LED emission and phosphor emission appear as white light.

LED + Phosphor

Radiation from LED (absorbed by phosphor)

Radiation from phosphor down-conversion (emission from phosphor)

George, Denault, and Seshadri Annu. Rev. Mater. Sci, 2013, 43, 2.1:2.21

Cerium-substituted yttrium aluminum garnet: The prototypical phosphor

YAG:Ce³⁺ is a widely used phosphor because of its high photoluminescent quantum yield (Φ = 80% to 95%)

Absorbs blue and then down-converts to a yellow emission

Mechanism of phosphor emission for white LEDs

The difference in energy between the 5d and 4f orbitals of free ion is in the UV region

5*d* orbitals stabilize when placing in a host

The different degree of covalency between the activator ion and surrounding anions causes the 5*d* orbitals to split

The well-shielded 4*f* orbitals are not strongly affected

Information on centroid shift and crystal field splitting

D(A) is determined by centroid shift (ϵ_c) and crystal field splitting (ϵ_{cfs})

 ϵ_c - centroid shift

 ϵ_{cfs} - size and shape of rare-earth polyhedron

 ϵ_{cfs} and ϵ_{c} behave independently

Access of ϵ_{cfs} and ϵ_{c} gives insight into the optical properties

D(A) is determined by centroid shift (ϵ_c) and crystal field splitting (ϵ_{cfs})

 ϵ_c - centroid shift

 ϵ_{cfs} - size and shape of rare-earth polyhedron

 ϵ_{cfs} and ϵ_{c} behave independently.

Access of ϵ_{cfs} and ϵ_{c} gives insight into the optical properties

The luminescence occurs in the band gap

 Need wide band gap materials that can accommodate Ce³⁺

Using data science to predict the optical properties of phosphors

Centroid shift from 160 Ce³⁺ phosphors collected and curated in a database

In collaboration with Pieter Dorenbos – TU Delft

Centroid shift (ϵ_c) is closely related to host anion

Centroid shift from 160 Ce³⁺ phosphors collected and curated in a database

In collaboration with Pieter Dorenbos – TU Delft

Fluorides have smallest centroid shift because of its ionic nature

Oxides and halides tend to have a wide range of centroid shift

Nitrides, sulfides, and selenides possess the largest centroid shift due to their extensive covalent bonding

An ensemble learning method was constructed to predict ϵ_c using features based on numerical equations

$$\chi_{av} = rac{\sum n_i z_i \chi_i}{\sum n_i z_i} \qquad lpha_{av} = rac{\sum m_e lpha_e}{\sum m_e}$$

Variable	Notation
Relative permittivity	٤ _r
Avg. cation EN	χ_{av}
Avg. anion polarizability	α_{av}
Ionic radius	R _M
Difference in radius	ΔR
Average bond lenghth	R _{av}
Coordination number	n _i
Condensation	cond.

An ensemble learning method was constructed to predict ϵ_c using features based on numerical equations

$$\chi_{av} = rac{\sum n_i z_i \chi_i}{\sum n_i z_i} \qquad lpha_{av} = rac{\sum m_e lpha_e}{\sum m_e}$$

Variable	Notation
Relative permittivity	٤ _r
Avg. cation EN	χ _{av}
Avg. anion polarizability	α_{av}
Ionic radius	R _M
Difference in radius	ΔR
Average bond lenghth	R _{av}
Coordination number	n _i
Condensation	cond.

A second machine-learning model was constructed to predict E_g using 4916 experimentally measured values

A classification algorithm was first used to separate metals from nonmetals

97% accuracy achieved

	Total
PCD*	102,532
Metals	66,819
Nonmetals	35,371

A second machine-learning model was constructed to predict E_g using 4916 experimentally measured values

A classification algorithm was first used to separate metals from nonmetals

97% accuracy achieved

A regression model was then constructed to quantitatively estimate E_g of 35,371 nonmetals contained in PCD

RMSE = 0.45 eV

Y. Zhuo, A. Mansouri Tehrani, and J. Brgoch J. Phys. Chem. Lett. 2018, 9, 1668-1673.

Maximizing centroid shift and band gap in inorganic phosphors

Plotting the machine-learning predicted centroid shift and band gap for unknown compounds provides high-level Ce³⁺ phosphor screening

Research opportunities for developing inorganic phosphors

Predicting a material's emission spectrum using data science

Accelerated phosphor discovery using robotics

Y. Zhuo and J. Brgoch, Opportunities for Next-Generation Luminescent Materials through Artificial Intelligence, J. Phys. Chem. Lett. **2021**, 12, 764.