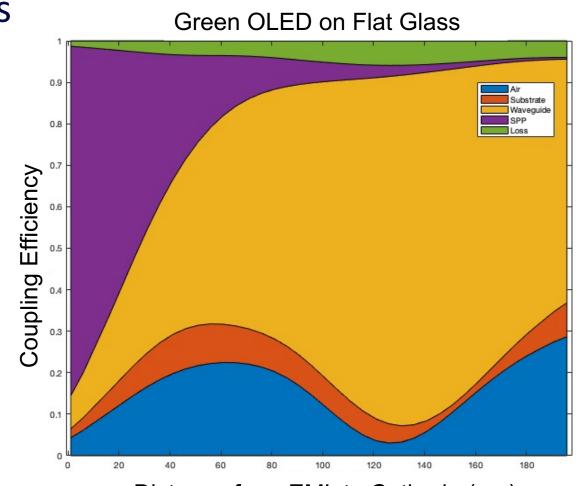

OLED Outcoupling Benefits and Design

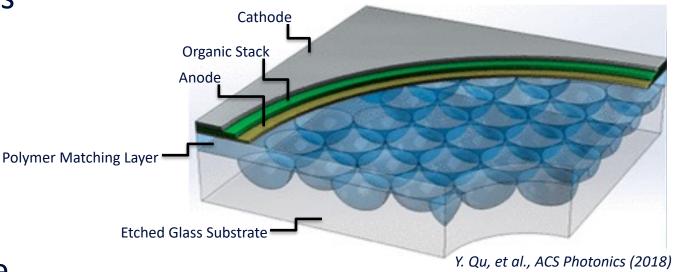
Solid-State Lighting Virtual Workshop Claire Arneson Advisor: Prof. Stephen Forrest

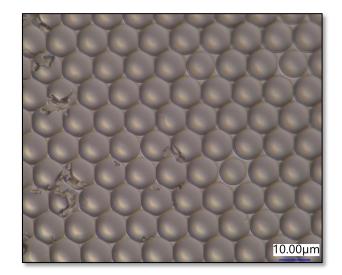


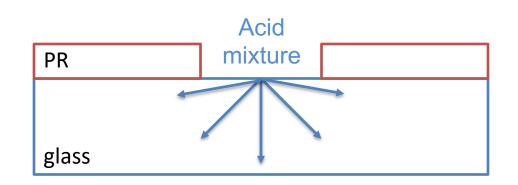
Light extraction in organic light-emitting diodes

• External quantum efficiency (η_{ext}) is the product of internal quantum efficiency (η_{int}) and outcoupling efficiency (η_{oc})

 $\eta_{ext} = \eta_{int}\eta_{oc}$


• Waveguide modes are the largest source of loss at peak efficiencies

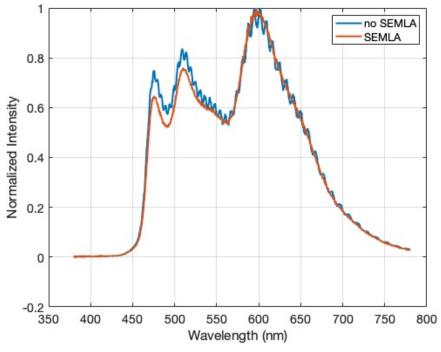

- Internal reflection at substrate/air and organic/substrate interfaces is decreased by:
 - 1. Decreasing incidence angle
 - 2. Decreasing index of refraction mismatch
- Sub-electrode microlens arrays (SEMLA) can be used to improve organic/substrate interface

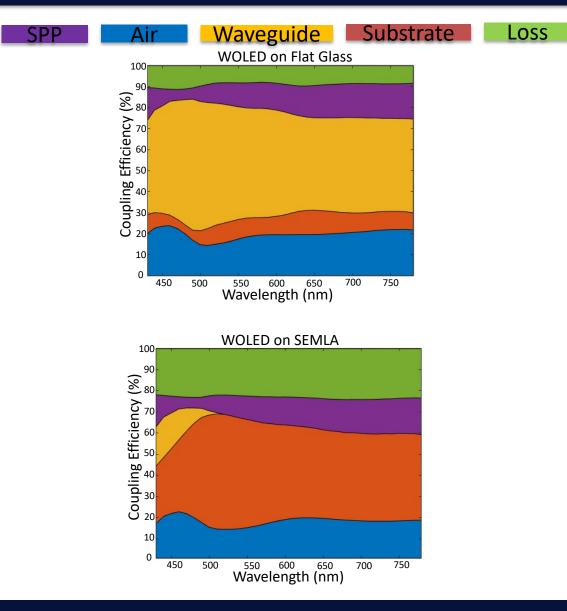


- Hexagonal close-packed array of 1µm holes with 10µm spacing are patterned in photoresist
- 2. Substrates are etched in a 1:6 surfactant:buffered HF mixture
- 3. A high-index polymer is spun to planarize the substrate surface



- Lens coverage has fill factor = 1
- Can be fabricated in flexible thin glass without decrease in extraction efficiency
 - 200µm Willow[®] Glass

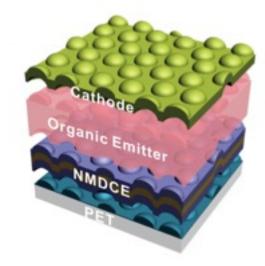


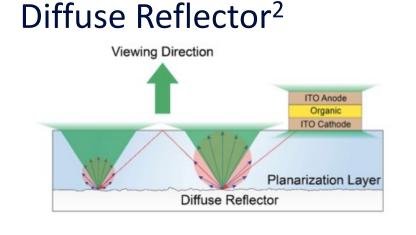

Green OLED Enhancement Factor					
	SEMLA	SEMLA + IMF	Reference		
Thick glass SEMLA	1.2	2.2	Y Qu, et al. ACS photonics 5.6 (2018): 2453-2458.		
Thin glass SEMLA	1.2	2.3	[this work]		

- Nearly 100% coupling efficiency from waveguide modes to substrate modes
 - SEMLA alone has an enhancement factor of 1.3 for WOLED
- Spectrum is not changed with SEMLA

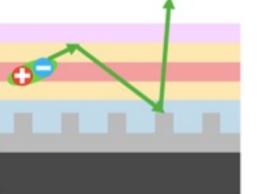
SSL Workshop

7


• Internal reflection at substrate/air and organic/substrate interfaces is decreased by:


Increasing the coupling efficiency into air modes

- Decreasing incidence angle 1.
- 2. Decreasing index of refraction mismatch


Table modified from A Salehi, X Fu, D-H Shin, and F So, Adv. Funct. Mater. 2019, 29, 1808803

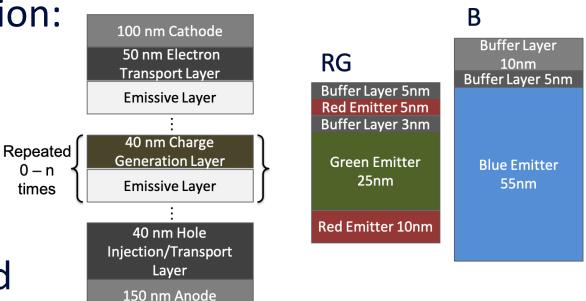
Random Nanostructures¹

2D Grating⁴

Increasing the coupling efficiency into air modes 🛛 😂 🗲 😽

- Internal reflection at substrate/air and organic/substrate interfaces is decreased by:
 - 1. Decreasing incidence angle
 - 2. Decreasing index of refraction mismatch

Extraction Method	Extracted Modes	Enhancement Factor	Reference
Random Nanostructures	Waveguide (WG) and surface plasmon polariton (SPP)	2.4	[1] L-H Xu, et al. ACS nano 10.1(2016): 1625-1632.
Diffuse Reflector	WG	2.5 (green)	[2] J Kim, et al. <i>ACS Photonics</i> 5.8 (2018): 3315-3321.
Scattering Grid	WG	1.5 (green)	[3] Y Qu, et al. ACS Photonics 4.2 (2017): 363-368.
2D Grating	WG and SPP	1.48	[4] Y-G Bi, et al. <i>Advanced Materials</i> 25.48 (2013): 6969-6974.
SEMLA + substrate outcoupling	WG and substrate	1.7 (MLA), 2.8 (IMF)	[5] Y Qu, et al. <i>ACS photonics</i> 5.6 (2018): 2453-2458.


Table modified from A Salehi, X Fu, D-H Shin, and F So, Adv. Funct. Mater. 2019, 29, 1808803

What's next for SEMLA?

- Improving substrate mode extraction: not all substrate modes can be coupled out by MLA
 - ~20% of photons are trapped in the substrate
- Combining SEMLA with optimized OLED design
 - Deep stacked structures
 - Striped R/G/B design

EQE	Experiment	Theory	Theory + SEMLA + IMF
3 R/G, 1B	57.7%	59%	252%

C Coburn, C Jeong, and SR Forrest. ACS Photonics 5.2 (2018): 630-635.

- This work is sponsored by:
 - US Department of Energy Solid State Lighting Program
 - Universal Display Corporation
- This work was performed, in part, at the University of Michigan Lurie Nanofabrication Facility

