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PROBLEM STATEMENT

• Greenhouse gas emissions from industry primarily come 
from burning fossil fuels for energy, as well as 
greenhouse gas emissions from certain chemical 
reactions necessary to produce goods from raw 
materials.

• Direct and Indirect Emissions
o Direct emissions: produced on-site by burning fuel 

for power or heat, through chemical reactions, and 
from leaks from industrial processes or equipment
 Largest source: Consumption of fossil fuels for 

energy 
o Indirect emissions: produced off-site by burning 

fossil fuel at a power plant to make electricity, which 
is then used by an industrial facility to power 
industrial buildings and machinery
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Total US GHG Emissions in 2019 = 6,558 Million Metric Tons of CO2 equivalent 

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions



SOLAR FLUX AS A THERMAL ENERGY INPUT

• Industrial processes such as steel 
or cement manufacture, ore 
refining, fuel or chemical 
production, and food products 

• Can provide both heat and 
electricity for processing

• Ability to achieve high 
temperatures

• Potential for storage of both heat 
and energy over varying time 
scales
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Sustainable pasta production; Mmmm, 
pasta. (DLR/Barilla)

Solar fuels (Synhelion.com)

Steel production

Concentrating solar can address decarbonization from both direct and indirect sources



SOLAR THERMOCHEMISTRY (STC)

• High temperature applications (600-1500 °C)
• Synergistic with CSP particle technology
• Chemical and sensible heat storage
• Many technologies still low TRL
• Must increase efficiency and decrease costs 

to make technology more competitive
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Solar thermochemistry harnesses concentrated solar heat to drive chemical reactions that 
would normally be energy- or resource-intensive



SYSTEM CHALLENGES AND CONSIDERATIONS 

• Materials: Identify, synthesize, characterize novel working materials for STC 
processes

• Reactor/Receivers: On-sun receiver/reactor designs for STC are more complex
o High temperatures may necessitate exotic building materials
o STC processes may require increased residence times on-sun to achieve desired 

temperature
o Potential need for inert atmospheres or vacuum pumping 
o Gas separations

• Intermittency: How to enable 24/7 operation?
• Techno-economics: Provide a pathway to scale-up and integration
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In order to de-risk and advance STC technology, one must consider many moving parts 



DEEP DECARBONIZATION EXAMPLE: AMMONIA PRODUCTION

• Ammonia (NH3) is an energy-dense chemical and a vital 
component of fertilizer, hydrogen carrier, and energy supplier

• NH3 synthesized via the Haber-Bosch process
o Requires high pressures (15-25 MPa) and temperatures 

(400-500 ⁰C)

o Consumes > 1% of global energy use

o Heat, power, and hydrogen are all sourced from 
hydrocarbons

• Process including H2 production generates about 2.3 t of 
fossil-derived CO2 per t of NH3, and is responsible for ~1.4% 
of global CO2 emissions

• Steam reforming of natural gas for H2 generation accounts 
for 84% of req’d energy
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Can NH3 be synthesized via a renewable, carbon-neutral technology powered 
by concentrating solar ?

Schematic diagram of a typical conventional 
methane-fed Haber Bosch process (Energy 
Environ. Sci., 2020,13, 331-344.)



SOLAR THERMAL AMMONIA PRODUCTION (STAP)

• Two cycles
o N2 separation from air using redox-active metal 

oxides (on-sun, moving particles)
o Production of NH3 from produced N2 and green 

H2 using metal nitrides (off-sun, batch)
• Inputs are sunlight, air, and hydrogen; the output is 

ammonia
• Significantly lower pressures than Haber-Bosch
• The process consumes neither the oxide nor the 

nitride particles, which are cyclable 
• Low TRL: How do we develop and de-risk? What are 

key challenges?
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An advanced solar thermochemical looping technology to produce and store nitrogen 
(N2) from air for the subsequent production of ammonia (NH3)



KEY CHALLENGES: MATERIALS

• Materials discovery and synthesis
o Selection and synthesis of working materials
o Nitride compounds less common than oxide materials
 Smaller pool of reported materials
 More difficult to synthesize

• Materials must be carefully and comprehensively characterized 
o Durability: is structural integrity maintained
o Thermodynamics: enthalpy, reactivity, reaction temperature
o Kinetics: does the reaction proceed quickly (determines time on-sun)
o Cyclability: can they be cycled repeatedly with no loss of performance
o Particle size: affects kinetics, heat and mass transfer
o Chemical stability: no undesired phase changes, deactivation 
o Cost/Availability: avoid critical elements 
o Ease of synthesis and scale-up

9 / 1 4 / 21 I N D U S TR IA L  D E C A RB ON I Z A T I ON :  R E N EWABLE  P R OC E S S  H E A T I N G F R OM C O N C E N TR A T I N G S O L A R  T H E R MA L 8

Materials choice influences every aspect of STAP system design

Down-select of nitride candidates



KEY CHALLENGES: RECEIVER/REACTORS

• Requires combination of experiment and modeling
o Decisions informed by properties of reactive materials 

(oxide and nitride particles)
oHeat and mass transfer modeling, supported by 

experimental data, inform scale and design
• Key considerations (for STAP metal oxide reduction step): 

o Direct or indirect irradiation? Direct
o Temperature requirements? Tred ~ 800 °C
o Window or windowless receiver? Windowless
o Batch or moving particle reactor? Moving particle
o Sweep gas or pumping? Neither
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Design and scale of receiver/reactor must be assessed early in the process

Benchtop reduction reactor design



POTENTIAL MOVING PARTICLE RECEIVER DESIGNS 

• Estimated Treceiver ≤ 800 °C and ∆Treceiver = 
200 – 500°C, based on:
o Materials implications
o System modeling

• Two possible  options among existing 
technologies:
o Expand falling particle receiver 

envelope
o Target smaller systems with centrifugal 

receiver
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Falling Particle Receiver (SNL) Fluidized Bed Receiver
(PROMES-CNRS)

Centrifugal Receiver
(DLR)
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• Direct irradiance can lead to high 
efficiency

• No high-cost nickel materials
• Demonstrated at 1MW scale with 

significant operational experience

• Direct control over residence time 
and temperature rise

• Possible to control oxygen partial 
pressure with enclosed tubed

• Particle loss can be controlled

• Direct irradiance leads to high 
efficiency

• Direct control over residence time 
and temperature rise

• Particle loss can be controlled
• Low particle velocity and nod angle 

minimizes advective loss 
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s • Advective loss is sensitivity to particle 
and wind velocity

• Particle loss is an economic concern
• Requires face-down configuration at 

100 MW scale (taller tower)
• Difficult to achieve curtain opacity 

with high temperature rise

• Tube bundles have flux 
limitations, which reduces 
efficiency

• Fluidization gas is an energy 
parasitic

• Limited experience with scaling or 
multi tube receivers 

• Commercial scale size limits (~10 MW)
• Requires multiple apertures for 

surround field



KEY CHALLENGES: INTERMITTENCY
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• STAP process can be decoupled
• Similar decoupling can apply to other chemical processes

To maximize productivity, a plant must be able to operate 24/7

High temperature air separation cycle 
can be performed on-sun

Resulting N2 can be stored as compressed gas 
or chemically, as the nitride (MNy)

Ammonolysis can be run off-sun or evening 
utilizing recuperated or stored heat



KEY CHALLENGES: STORAGE

• A feature of CSP is the ability to store heat for off-sun 
operation or electricity generation
o Particles are generally easier to store– they are dense, 

do not require compression, noncorrosive, stable at T 
> 1100 °C, and are amenable to multiple scales

o Thermochemical materials have added benefit of 
storing energy in the form of chemical bonds, 
irrespective of storage temperature

• H2 generated on-site via solar thermochemical water 
splitting can also act as a long-term chemical storage 
material, as well as a feedstock for chemical processes, 
e.g., ammonia production 
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Thermochemical Energy Storage (TCES) can store high temperature, 
high quality heat

PROMOTES: High Performance 
Reduction/Oxidation Metal Oxides for 

Thermochemical Energy Storage



KEY CHALLENGES: STC PRODUCTION OF HYDROGEN

• Solar thermochemical water splitting via utilization of metal oxide particles to produce H2

o One of several paths to water splitting (electrolysis, hybrid technologies)
• H2 can also be used as a medium for long-term energy storage, fuel, and reducing agent 

for other chemical processes, e.g., in steel production
• Many similar challenges as other STC processes 
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Thermochemical metal oxide cycle

A green, renewable source of hydrogen is essential for decarbonizing ammonia production

Ceria falling particle reactor

“Sunshine to Petrol”



TECHNO-ECONOMICS AND SYSTEMS ANALYSES 

• To attract industry and investment, it’s essential to model systems and techno-economics from the 
beginning of a project to identify pinch points and any show-stoppers

• Continuously refine model as data is collected
• Techno-economic and systems considerations include:

o CAPEX (infrastructure, construction costs, raw materials, labor…)
o Capacity
o Energy inputs/outputs
o O&M
o Lifecycle
o Return on investment
o Solar input
o Balance of plant
o Scale
o Operating conditions
o Efficiency
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Materials, reactors, systems performance, and techno-economics must all balance. The best 
element in isolation not necessarily the best for the system.



CONCLUSIONS AND CHALLENGES

• Concentrating solar has the potential to decarbonize industry by addressing both direct and 
indirect GHG emissions

• Solar-thermal chemistry (STC) can utilize high temperatures from concentrating solar resources 
and leverage particle technology to effect chemical reactions that would normally be carbon-
intensive

• The example of solar thermal ammonia production illustrates the considerations and challenges 
facing commercialization, including:

• Other STC processes face similar challenges
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o Materials
o Reactors
o Receivers
o Storage Intermittency

o Scale-up
o Cost/efficiencies
o Technoeconomic and systems analysis 

Overcoming these challenges will help meet the goal to “deliver an equitable, clean energy 
future, and put the United States on a path to achieve net-zero emissions, economy-wide, by no 

later than 2050.” 
( Executive Order 14008, “Tackling the Climate Crisis at Home and Abroad,” January 27, 2021.)
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