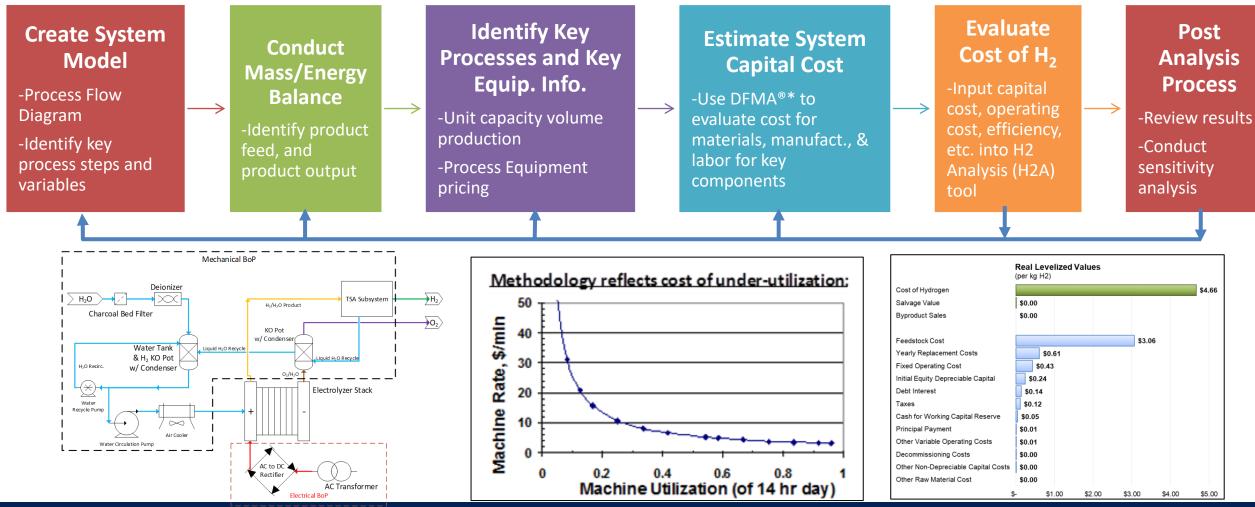


Strategic Analysis Inc.
Presentation to:

US DOE "Experts Meeting on Advanced Liquid Alkaline Water Electrolysis"

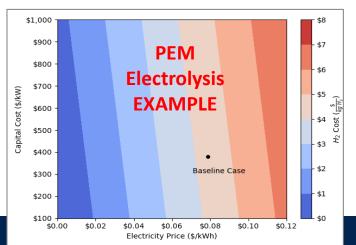
Brian D. James
Jennie Huya-Kouadio
Yaset Acevedo
Kevin McNamara

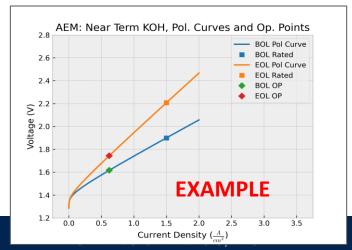
January 26, 2021

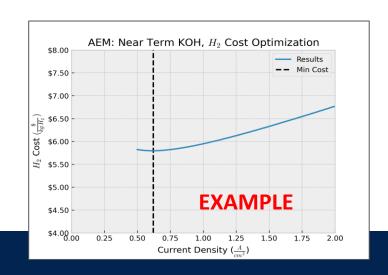

Outline

- Why TEA?
- Alkaline Design Evolution
- DFMA Design Basis
- Comparison of Systems (LA, PEM, AEM)
- Market projections
- Comparison of Cost Results
- Cost Reduction Opportunities
 - LA = Liquid Alkaline
 - PEM = Proton Exchange Membrane
 - AEM = Anion Exchange Membrane

TEA Methodology


• Techno-Economic Analysis (TEA) is a tool to evaluate an entire system; evaluating the interactions between technical performance and cost.



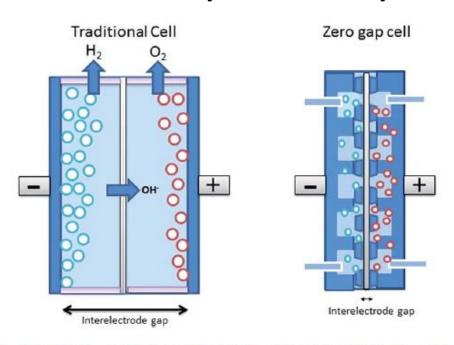


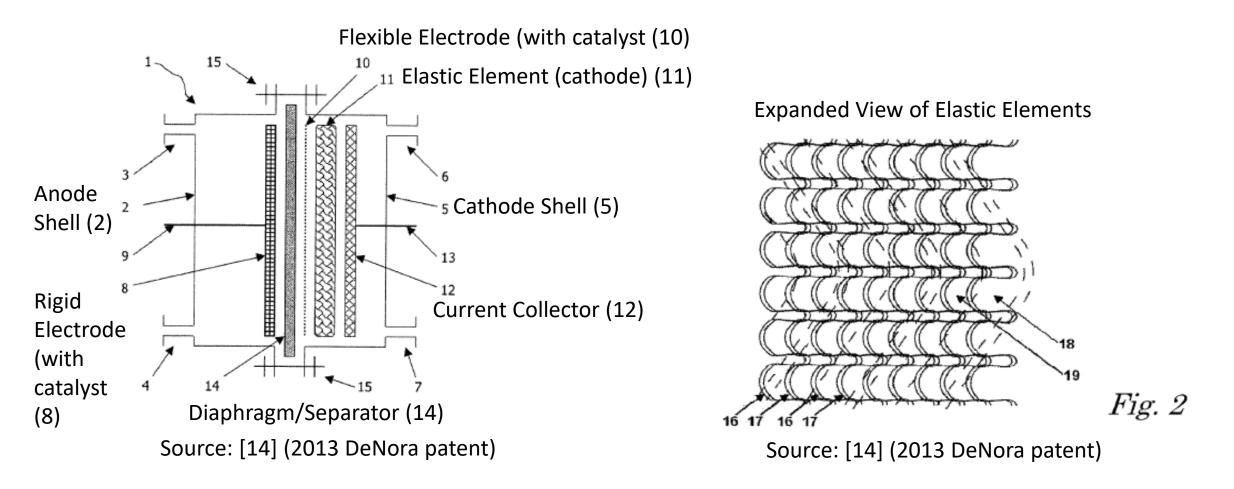
Opportunities for TEA

- Provide analysis that is <u>transparent, detailed, and made publicly available</u> to the technical community
- Use Hydrogen Shot Target \$1/kg to guide pathway technical targets
 - Top-down approach of setting a cost target and determining the bounds of key performance or cost parameters that "must be" achieved
- Incorporate performance and durability modeling to determine cost-optimal operating conditions and system configuration
 - Example cases under investigation: Anion Exchange Membrane Electrolysis
 - 1. Establish performance model with BOL and EOL operating curves based on degradation
 - 2. Determine constant voltage (efficiency) vs constant current (production) operation
 - 3. Determine most impactful parameters and establish interaction between H2A model and performance model
 - 4. Run through range of specified operating conditions to determine lowest H2 cost

LA Configuration Overview

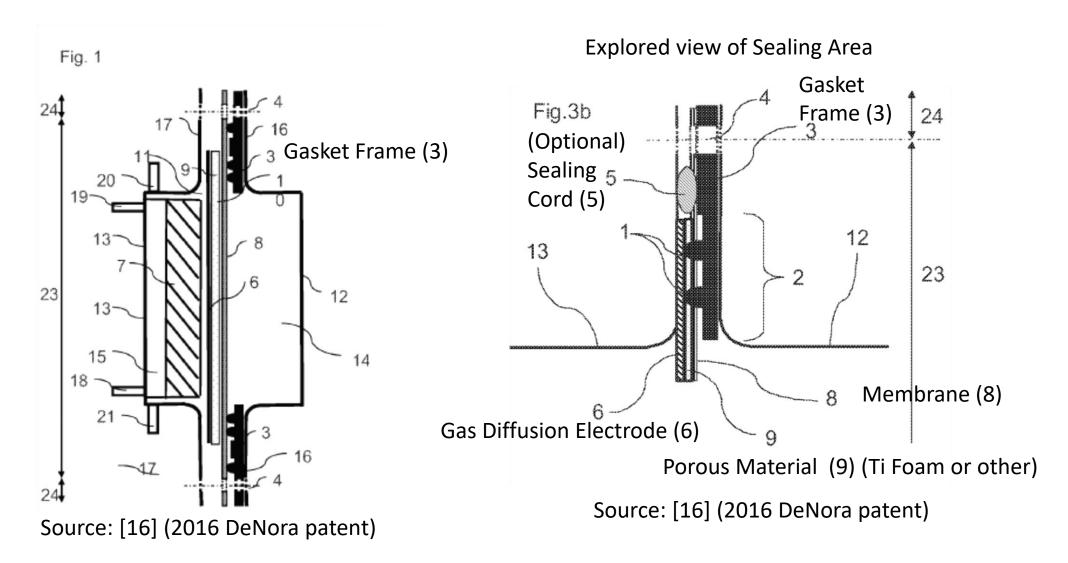
Finite Gap Vs. Zero Gap




Fig. 4 Schematic showing reduction of inter-electrode gap from employing a zero gap cell design. This significantly reduces the overall cell resistance, increasing performance, particularly at high current densities. Note the loss in direct surface area between the pates due to the bubbles in the conventional design.

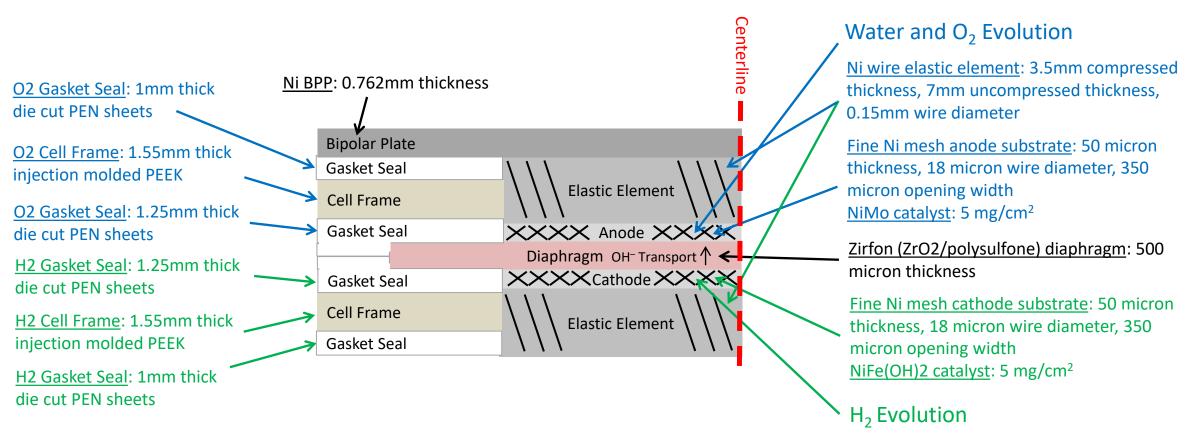
Source: Phillips & Dunnill, 2016 [13]

Traditional/Old-Style LA had a 2-3mm gap between the electrodes and the diaphragm [12]. Modern Zero-Gap Designs press electrodes against the diaphragm.


Elastic Elements (for Zero Gap Design) to Press Electrode into Diaphragm

DeNora-Style electrodes (LA & Chlor-Alkali) use an Elastic Element to maintain a constant gap between electrodes. Traditional designs use a metal box/pan/flange to collect bubbles and route them away from the electrodes.

Frame Seal Elements to Seal Against the Porous Diaphragm



A Frame Gasket (with contours) can be used to seal the porous diaphragm.

SA <u>Baseline</u> Alkaline Cell Design (SA-representation of traditional LA electrolysis cell)

- Cross-sectional view of single Alkaline electrolysis cell
- Generic cell design: does not exactly match any one company (but is representative of key features)

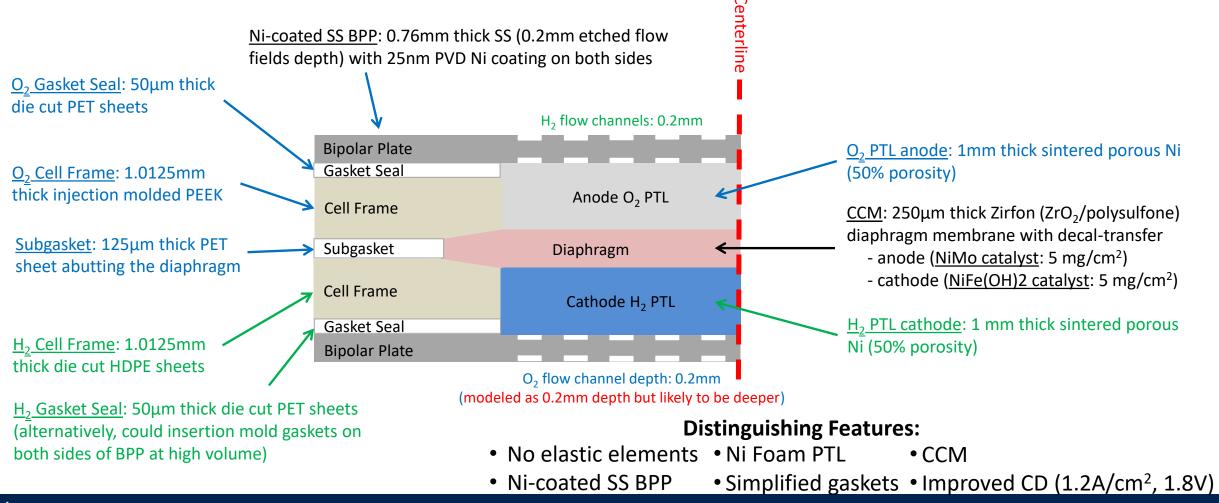
SA design used for Baseline Cost Analysis.

NREL and Hydrogenics (~2017) Alkaline Design

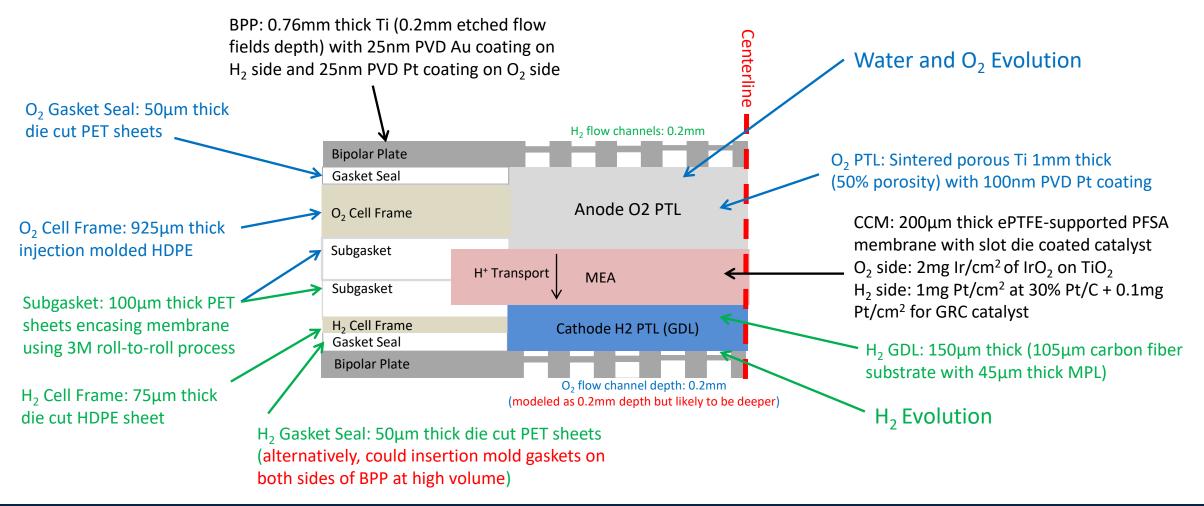
(Both are simplified, PEM-like construction)

Layers of Repeat Cell:

- Bipolar plate
- Seal
- Structural ring (cell frame)
- Seal
- Pre-electrode (Ni mesh or foam)
- Cathode (catalyst layer)
- IMET membrane (diaphragm)
- Anode (catalyst layer)
- Pre-electrode (Ni mesh or foam)
- Structural ring (cell frame)
- Seal


LA Electrolyzer Designs seem to be moving toward simplified, PEM-like fabrication:

- reduced part count
- easily assembled
- non-metal structural frames


SA Future Alkaline Cell Configuration

- Cross-sectional view of single ALK electrolysis cell
- Generic cell design: does not exactly match any one company (but is representative of key features)

SA PEM Cell Configuration

- Cross-sectional view of single PEM electrolysis cell
- Generic cell design: does not exactly match any one company (but is representative of key features)

Liquid Alkaline Electrolysis Alternatives & Advanced Features

Diaphragm

- Thinner diaphragm thickness
- Alternative to Zirfon Perl UTP 500 (polysulphone with ZrOx)
 - IMET
 - PBI: m-PBI [18], ion-solvating/ KOH-doped PBI [8]

Elastic Elements

- Eliminate entirely
- Use only on one electrode [21]
- Alternate materials
- Alternate coiling/construction

Frames

- Alternate metals
- Resins (vinyl chloride, PE, PP, PPS, PSF, Epoxy, etc.) [14]
- Injection Moldable: PPS-40GF, PEEK [18]

Seals

Teflon, EPDM, PEN

PTL/Current Distributors

- Ni Foam, Ni Mesh
- Expanded metal (Thyssenkrupp Chlor-A) [5]
- Plastic mesh (coated) [20]

Catalysts

- Baseline: Ni-Mo and Ni-Fe(OH)₂
- Pt/Ru/Rare-Earths [1], RuO2 [29]
- No noble metals
- No catalyst on anode/OER side [1]

Electrodes (Supports)

- Eliminate via applic. directly to membrane (CCM) or PTL
- Alternatives to fine woven Ni mesh
 - Foams [7]
 - Possibly with graded porosity [13]
 - Microfibrous felts [7]
 - Nanowire felts [7]
 - Ni-coated steel [11]
 - Porous carbon paper [13]
 - Catalyst coated Perforated Ni sheet [13]

Bipolar-Plate/Separate-Plate

- Ti, Ni, SS/Mild-Steel with Ni coating [30]
- Flow fields or no flow fields

Other Ideas

 Plastic Stack (use of plastic-framed cartridges, meltwelded to form a sealed stack [20]

Asahi Kasei Illustration of an Advanced LA Cell

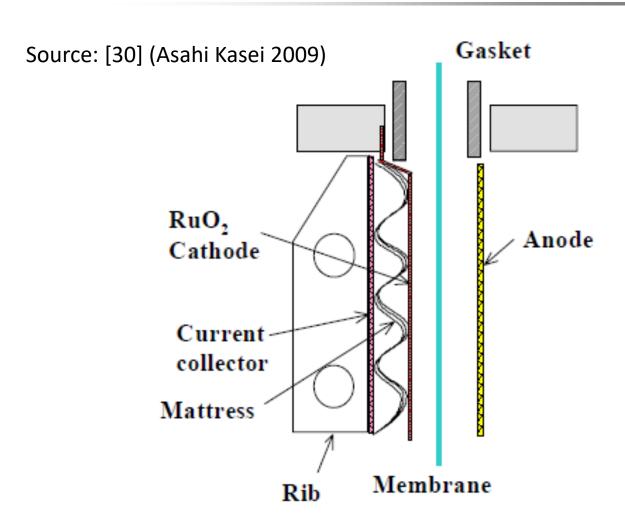
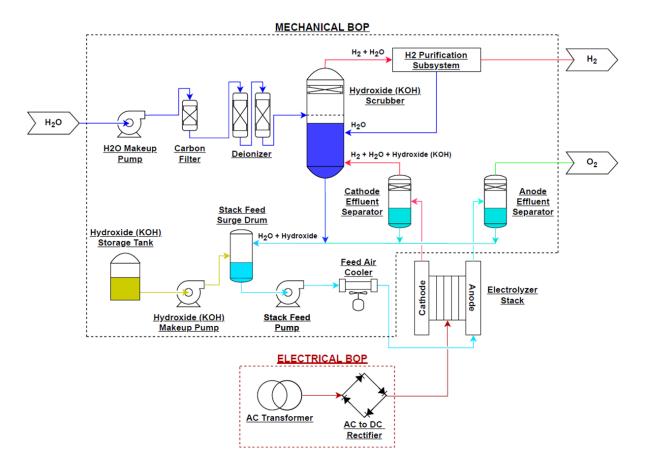
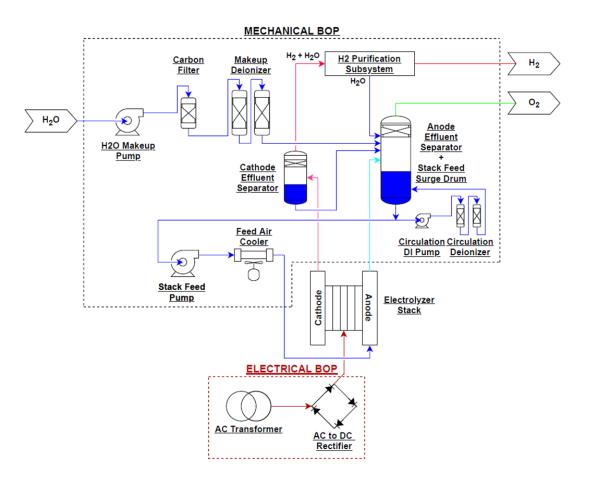


Figure 8. Cross section structural view of AKCC zero gap cell.


(For Chlor-Akali operation)

Illustrates:

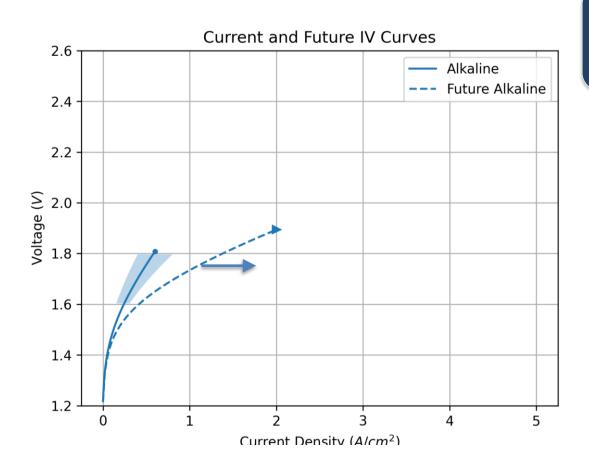

- Zero-Gap cell
- Advanced catalyst (RuO₂ cathode)
 - Applied via thermal decomposition
- Fine Ni mesh electrode substrate
- "Mattress" Elastic Element (on only one side)
- Current Collector
- Cell Frame
- Gaskets against membrane

System Diagrams

LA Electrolysis System

PEM Electrolysis System

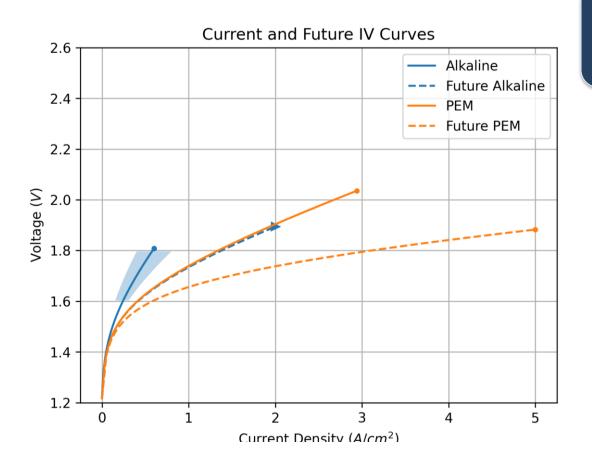
Advantages & Disadvantages of Electrolysis Technologies


Technology	Pros	Cons
Liquid Alkaline	 Stronger current market position Lowest CAPEX, ~equal OPEX, longest lifetime 	 Perceived limited technical improvement (maturity) Limited dynamic operation (~s), slow
	 Mature technology with expanding manuf. base 	start-up (~0.5 h) • Lower product purity
	 No obvious supply chain concerns 	KOH handling
PEM	 Excellent operating characteristics: dynamic response ~ms, <5 min SU 	 Higher CAPEX, no clear OPEX advantage
	 Higher product purity and (theoretically) pressure 	 Precious metal costs & supply chain concerns
· - ···	 Expected technical advances 	Shorter lifetime than ALK
	Lower system footprint	
	 Pure water system/No KOH 	
	Expected lower catalyst and	Lifetime/membrane durability
	membrane cost	Low current density (both on pure water
AEM	 Use of SS (instead of Nickel) 	and in 1M KOH)
	 Low/No use of KOH (improved handling, materials compatibility, safety) 	

LA response is "slow" compared to PEM. But is it fast enough for Renewable (with hybridization)?

AEM research focus is on pure-water operation. But KOH improvement in CD and lifetime may be worth it.

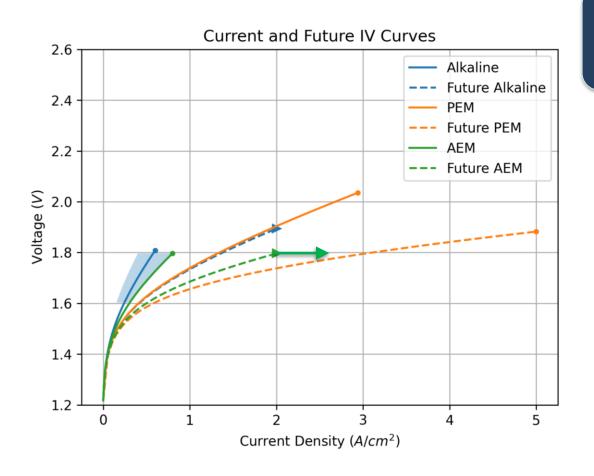
Current and 2030 Polarization Curves


Most customers are agnostic about *how* H₂ is produced: care about **price**, **pressure**, **purity**, **and footprint**

Operating point selected for each system independently and depends on application conditions

- Hydrogen refueling station using grid energy might choose low voltage (high electrical efficiency) while a solar-associated system might select high current density (low capital cost)
- The entire system is designed around the expected conditions and operating point: can lead to orthogonal development directions
- Current "standard" operating points:
 - Alkaline: 0.4 0.8 A/cm², 1.9 2 V/cell

Current and 2030 Polarization Curves


Most customers are agnostic about *how* H₂ is produced: care about **price**, **pressure**, **purity**, **and footprint**

Operating point selected for each system independently and depends on application conditions

- Hydrogen refueling station using grid energy might choose low voltage (high electrical efficiency) while a solar-associated system might select high current density (low capital cost)
- The entire system is designed around the expected conditions and operating point: can lead to orthogonal development directions
- Current "standard" operating points:
 - Alkaline: 0.4– 0.8 A/cm², 1.9 2 V/cell
 - PEM: 2 2.5 A/cm², 1.9 2 V/cell

Current and 2030 Polarization Curves

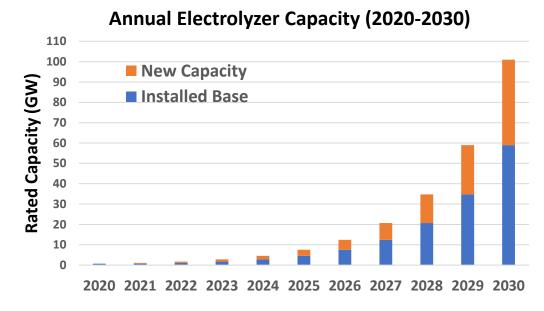
Most customers are agnostic about *how* H₂ is produced: care about **price**, **pressure**, **purity**, **and footprint**

Operating point selected for each system independently and depends on application conditions

- Hydrogen refueling station using grid energy might choose low voltage (high electrical efficiency) while a solar-associated system might select high current density (low capital cost)
- The entire system is designed around the expected conditions and operating point: can lead to orthogonal development directions
- Current "standard" operating points:
 - Alkaline: 0.4 0.8 A/cm², 1.9 2 V/cell
 - PEM: 2 2.5 A/cm², 1.9 2 V/cell
 - AEM: $^{\circ}$ 0.4 0.5 A/cm², 1.8 2 V

Electrolyzer Market Outlook

- Future growth largely driven by EU: combination of government policy & investment money and firm decarbonization pledges
- Manufacturing base expanding rapidly: multiple gigawatt/yearscale factories in development
 - ITM: 0.35/1/2 GW, PEM, ThyssenKrupp: 5GW, LA, NEL: 0.5/2GW, LA, PlugPower/IGW: ~1GW, PEM, McPhy: 1GW, LA, Enapter: ~5GW, AEM
- Majority of electrolyzer projects paired with renewable electricity generation: wind, solar, hydro


PEM vs. Alkaline?

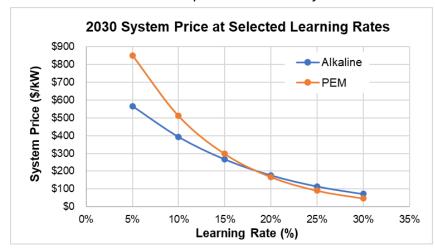
Framework 1:

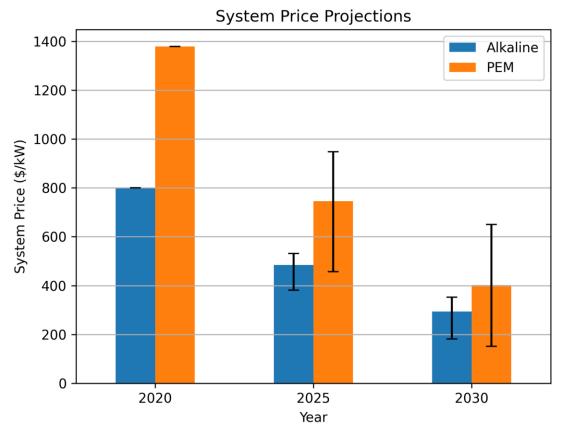
- LA is currently much less expensive and produced in higher quantities
- Maintains its cost lead over PEM and is the dominant technology in 2030 and beyond

Framework 2:

- PEM has more technology-improvement potential
- Superior dynamic response allows PEM to captures most/all of electrolysis market linked to renewable energy
- Scaling reduces costs to lower/equal to LA
- PEM captures equal or greater total market share in 2030 and beyond

Strategic Analysis Internal Projection based on compilation of public data

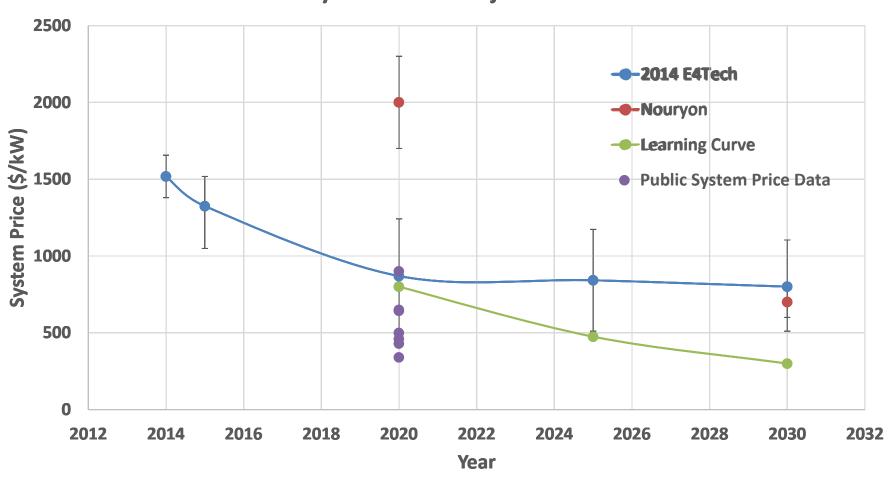

Learning Curve Approach Suggests <\$500/kW System Prices for Both LA and PEM


- Renewable energy learning rate estimates:
 - Wind Energy: 19% (BloombergNEF)
 - Solar PV Modules: 24% (BloombergNEF)
 - Lithium-ion battery packs: 20% (Ziegler & Trancik, 2020)
 - Bloom SOFC: 28% (company presentation)
 - Plug Power PEM: 25% (2019 company presentation)

Learning rate cost estimate model inputs:

Technology	Cumulative MW to date*(est.)	Cumulative 2030 MW (est.)	2020 Costs (\$/kW)	\mapsto
Alkaline	600*	60,000	\$800	
PEM	50	40,000	\$1,380	

*included pre-1975 alkaline systems at a 50% discount

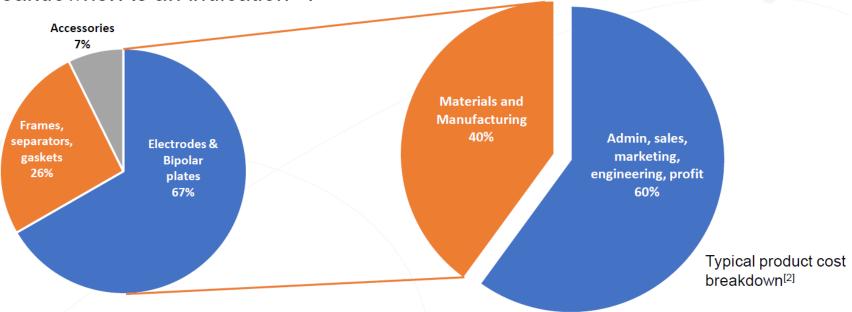


Estimates shown combine learning rate assumptions with manufacturer & expert price projections (Not based on DFMA)

System Price Projections from Variety of Sources

- These are Prices, not Costs
- Trend-line is downward
- Lowest priced ~2020 systems tend to be Chinese
- Full details & assumptions are not known. (That's why we are doing a full DFMA-style analysis)

Nouryon Projects Future LA Electrolysis to be <\$100/kW Stack and <\$1000/kW System


Nouryon, formerly AzkoNobel, is a Dutch multinational specialty chemical company

Nouryon

Cost breakdown

Different stack designs have different cost breakdowns. As an indication^[1]:

Materials and manufacturing contribute significantly to the stack cost:

2019 Nouryon Projections

Current Costs:

Stack \$115 - \$700/kW

BOP \$230 - \$460/kW

Other \$1,150/kW

Total \$1,700 - \$2,300/kW

Future Targets:

Stack \$<115/kW

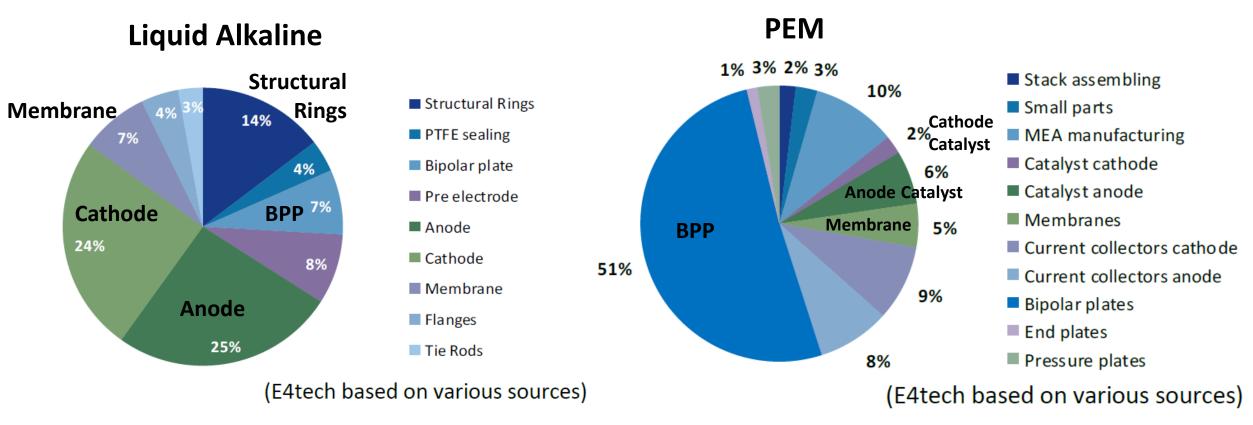
BOP minimize The m

Total ~\$600-\$800/kW

10tai 9000 9800/ KVV

[1] FCHJU Report: Study on development of water electrolysis in the EU (2014) [2] PLTW, Introduction to manufacturing processes

Electrochemical Conversion & Materials conference - June 2019


Source: [30] (Nouryon 2019)

~\$500 to 700/kW

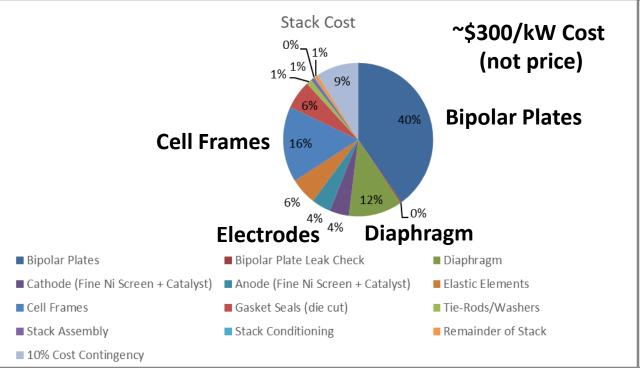
Electrolyzer Stack Cost Breakdown (from 2014 E4tech Report to FCHJU [32])

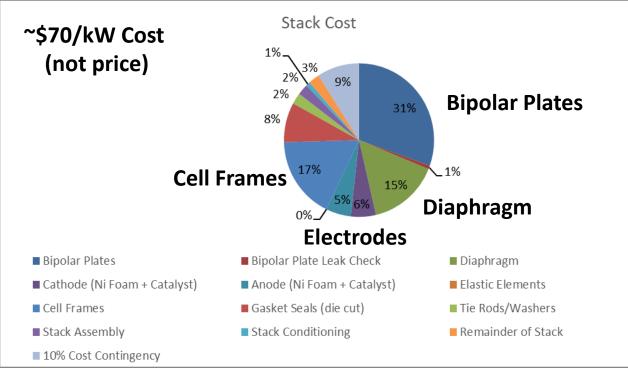
Cost "breakdowns shown are very generic, as system designs are manufacturer-specific"

Electrodes & BPP ~56% (broadly consistent with Nouryon projection of 67%)

PEM Bipolar Plate cost ~50% of stack cost.

Note: Anode/OER catalyst cost is modest
but the analysis pre-dates recent 10x spike in Iridium price




LA Electrolyzer Stack DFMA

Preliminary Results: DFMA Analysis in Progress

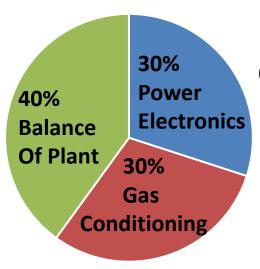
Baseline: 5MW Stack (500 MW/year)

Future/Advanced: 5MW Stack (500 MW/year)

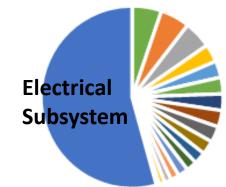
Trends:

Both Stacks: 1m² active area Baseline: 0.4 A/cm² at 1.8 V/cell Future: 1.0 A/cm² at 1.8 V/cell

- Large cells and large stack powers are cost-favored
- Simplified cell design reduces cost
- Higher power density reduces cost



LA Electrolyzer Balance of Plant (BOP) Analysis


Preliminary Results: Cost Analysis in Progress

2014 E4tech BOP Cost Breakdown [32]

Preliminary SA BOP Cost Breakdown: 25MW BOP Module

~\$455/kW (based on \$1512/kW system price, 40% gross margin, 50% stack cost fraction)

~\$180/kW Cost (uninstalled, based on scaled price quotes/estimates (not DFMA))

- Hydroxide (KOH) Scrubber
- Feed Air Cooler
- Anode (O2) Effluent Separator
- Hydroxide (KOH) Storage Tank
- Piping & Tubing (ft)
- H2O Makeup Pump
- Deionizer
- Cathode (H2) Effluent Separator Jacket Chiller
- PRV
- Gas Filters

- H2 Purification Subsystem
- Stack Feed Pump
- Cathode (H2) Effluent Separator
- Stack Feed Surge Drum
- Indicator/Controllers
- Liquid Phase Filters
- Actuated Control Valves
- Other valves
- Hydroxide (KOH) Makeup Pump
- Elect rical Subsystem

Preliminary observations:

- Electrical subsystem (rectification) is a major BOP cost contributor
- Economies of scale observed: what is largest practical BOP sizing?
- Use of BOP modularity will reduce cost but it is hard to reliably quantify
- Economies of manufacturing rate are less-beneficial when BOP-module size is large

Cost Reduction Strategies/Thoughts (1)

	2014 E4tech Recommendations/Assessment [32]	SA Thoughts
Zero-Gap Configuration	Improves performance	
Scale-Up Cell Size	Lower waste	
Scale-Up Stack Size		Looking at 5MW (or greater) stacks
Scale-Up BOP Components	Benefits to 500kW – 1MW, then flatter curve	Benefits to ~25MW (under review)
Scale-Up Manufacturing Rate		Examine out to 10GW/year. Compare many small stacks or systems vs. fewer large stacks (Enapter approach)
System Efficiency	Already high efficiency. Focus on reducing cost of high- efficiency systems	
Lifetime	Already high lifetime (>60kh). Focus on reducing cost of high-lifetime, high-efficiency, low-cost systems	
Dynamic Operation	Need dynamic operation to provide grid services and capture that revenue stream	Can be a key factor in market capture (vs PEM) and competitive LCOH
Bubble Reduction	To improve effective electrode area. Options include: centrifugal, magnetic fields, ultrasound, microwave	

Cost Reduction Strategies/Thoughts (2)

	2014 E4tech Recommendations/Assessment [32]	SA Thoughts
Stack/System Improvements	Anticipate <u>incremental</u> improvement in stack and system engineering and manufacturing	
Multi-MW Systems	Demo of multi-MW stacks and systems with reduced footprints and easier commissioning	3MW+ stacks already demonstrated. Is 10MW stack practical?
Advanced Catalysts	To achieve increased current densities, controlled morphologies, physiochemical properties, and stability in alkaline environments	
Membrane	Lower crossover rates, increased life	Can H2 purity be increased?
Factory Builds		(Further) manufacturing cost reduction via streamlined factory builds
Modularity		(Further) manufacturing & installation cost reduction via increased modularity and commonization of parts/subsystems
Turn-Down		Does poor AL turn-down limit operations & markets?

Cost Reduction Strategies/Thoughts (3)

	From 2019 "Perspectives on Low-Temperature Electrolysis" Ayers, Pivovar et al [33]	
Materials	Replace high-cost interconnect materials	
Integration	Component integration	
Cell Design	Advanced cell designs to enable higher current density at the same voltage.	
Stack Design	For pressurized systems: rotation of the stacks for improved gas separation	
Improved Efficiency	 Improve efficiency via: Improve gas and water management with cell via optimization of electrode porosity and additives to improve wetting higher–activity catalyst on both electrodes 	

Thank You!

[1] "De Nora electrodic package for Alkaline Water Electrolysis." Industrie De Nora S.p.A. Apr. 2016.

https://www.denora.com/dam/jcr:3e2377ae-20bf-492f-9c14-80b129364bf5/AWE.pdf?refid=a085adc6-c26f-4d27-8018-82db0dab4b64

[2] "Separator Membranes For Alkaline Electrolysis." AGFA-Gevaert N.V. 19 Jan. 2022.

https://www.agfa.com/specialty-products/solutions/membranes/separator-membranes-for-alkaline-electrolysis/

[3] "Alkaline Water Electrolysis." Industrie De Nora S.p.A. 2022.

https://denora.com/products/applications/energy-storage/alkaline-water-electrolysis.html

[4] "Green Hydrogen: ThyssenKrupp Expands Production Capacities For Water Electrolysis To Gigawatt Scale." ThyssenKrupp AG. 8 Jun. 2020.

https://www.thyssenkrupp.com/en/newsroom/press-releases/pressdetailpage/green-hydrogen--thyssenkrupp-expands-production-capacities-for-water-electrolysis-to-gigawatt-scale-82759

[5] "Chlor-Alkali Electrolysis." ThyssenKrupp Industrial Solutions AG.

https://ucpcdn.thyssenkrupp.com/_legacy/UCPthyssenkruppBAISUhdeChlorineEngineers/assets.files/products/chlor_alkali_electrolysis/thyssenkrupp_chlor_alkali_brochure_web.pdf

[6] Barros, Décio. "Zero-Gap Cathode Technology." De Nora do Brasil. CLOROSUR Technical Seminar. 13 Nov. 2014.

http://clorosur.org/technicalseminar/wp-content/uploads/2-Zero-Gap-CLOROSURRev1.pdf

[7] Yang, Feichen, et al. "Alkaline Water Electrolysis at 25 A cm⁻² with a Microfibrous Flow-through Electrode." Advanced Energy Materials 10.25 (2020): 2001174.

- [8] Yang, Feichen, et al. "Alkaline Water Electrolysis at 25 A cm⁻² with a Microfibrous Flow-through Electrode" (Supplementary Material). Advanced Energy Materials 10.25 (2020): 2001174.
- [9] Kraglund, Mikkel Rykær, et al. "Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers." Energy & environmental science 12.11 (2019): 3313-3318.
- [10] de Groot, Matheus T., and Albertus W. Vreman. "Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm." Electrochimica Acta 369 (2021): 137684.
- [11] Zayat, Billal, Debanjan Mitra, and S. R. Narayanan. "Inexpensive and efficient alkaline water electrolyzer with robust steel-based electrodes." Journal of The Electrochemical Society 167.11 (2020): 114513.
- [12] Phillips, Robert, et al. "Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design." International Journal of Hydrogen Energy 42.38 (2017): 23986-23994.
- [13] Phillips, Robert, and Charles W. Dunnill. "Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas." RSC advances 6.102 (2016): 100643-100651.
- [14] Perego, Michele, et al. "Elastic current collector for electrochemical cells." U.S. Patent No. 8,372,255. 12 Feb. 2013.
- [15] Pochari, Christophe. "Reduced Capex Alkaline Electrolyzers Using Commercial Off The Shelf Component (COTS) Design Philosophy." *Pochari Technologies*. 15 Jun. 2021.

https://pocharitechnologies.com/2021/06/15/reduced-capex-alkaline-electrolyzers-using-commercial-off-the-shelf-component-cots-design-philosophy/

[16] Kiefer, Randolf, et al. "Electrochemical cell having a frame seal for alternative sealing against marginal leakages of the electrolyte." U.S. Patent No. 9,476,131. 25 Oct. 2016.

[17] Carmo, Marcelo, et al. "Alkaline Water Electrolysis Vs. PEM Water Electrolysis-Exploring Their Full Performance." ECS Meeting Abstracts. No. 24. IOP Publishing, 2015.

[18] Ruth, Mark F., Ahmad T. Mayyas, and Margaret K. Mann. Manufacturing competitiveness analysis for PEM and alkaline water electrolysis systems. No. NREL/PR-6A20-70380. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2019.

[19] Frank, David, and Joseph Cargnelli. "Flow field plate for a fuel cell and fuel cell assembly incorporating the flow field plate." U.S. Patent Application No. 09/855,018.

[20] Bourgeois, Richard. "Advanced Alkaline Electrolysis." GE Global Research Center. UTRC Advanced Alkaline Electrolysis. 16 May 2006.

https://www.hydrogen.energy.gov/pdfs/review07/pdp 16 bourgeois.pdf

[21] DeNora, Oronzio. "Electrolysis cell." U.S. Patent No. 4,530,743. 23 Jul. 1985.

[22] Kumar, S. Shiva, and V. Himabindu. "Hydrogen production by PEM water electrolysis—A review." Materials Science for Energy Technologies 2.3 (2019): 442-454.

[23] Bodner, Merit, Astrid Hofer, and Viktor Hacker. "H2 generation from alkaline electrolyzer." Wiley Interdisciplinary Reviews: Energy and Environment 4.4 (2015): 365-381.

[24] Pletcher, Derek, and Xiaohong Li. "Prospects for alkaline zero gap water electrolysers for hydrogen production." International Journal of Hydrogen Energy 36.23 (2011): 15089-15104.

[25] Li, Xiaohong, Frank C. Walsh, and Derek Pletcher. "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers." Physical Chemistry Chemical Physics 13.3 (2011): 1162-1167.

[26] Noaki, Yasuhide, Yousuke Uchino, and Keiji Miyoshi. "Bipolar alkaline water electrolysis unit and electrolytic cell." U.S. Patent No. 9,683,300. 20 Jun. 2017.

[27] Schalenbach, Maximilian, Olga Kasian, and Karl JJ Mayrhofer. "An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation." International journal of hydrogen energy 43.27 (2018): 11932-11938.

[28] Hu, Weikang. "Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis." International Journal of Hydrogen Energy 25.2 (2000): 111-118.

[29] Hachiya, Toshinori, et al. "Ruthenium oxide cathodes for chlor-alkali electrolysis." ECS Transactions 16.39 (2009): 31.

[30] Mendoza, Paola Granados. "Materials for intensified alkaline water electrolysis." Nouryon. Electrochemical Conversion & Materials. 21 Jun. 2019.

https://projecten.topsectorenergie.nl/storage/app/uploads/public/5f0/319/f2d/5f0319f2d6a30956850267.pdf

[31] Vogt, U. F., et al. "Novel developments in alkaline water electrolysis." 8th International Symposium Hydrogen & Energy, Zhaoquing, China. 2014.

http://www.elygrid.com/wp-content/uploads/2021/07/event 8th-international-symposium-hydrogen-and-energy.pdf

[32] Bertuccioli, Luca, et al. "Study on development of water electrolysis in the EU." Fuel cells and hydrogen joint undertaking (2014): 1-160.

https://www.fch.europa.eu/sites/default/files/study%20electrolyser 0.pdf

[33] Ayers, Katherine, et al. "Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale." Annual review of chemical and biomolecular engineering 10 (2019): 219-239.

