

Joe Poindexter H₂ Products Manager

SYSTEM INTEGRATION CHALLENGES

© Teledyne Energy Systems Inc.

Teledyne Energy Systems

- Wholly Owned Subsidiary of Teledyne Technologies
- 122,000 ft² in two facilities
- Manufacturing, Engineering, Design, Sales & Service / Support
- State-of-the-art Thermoelectric, Hydrogen & Fuel Cell production
- 120 Employees

TELEDYNE TECHNOLOGIES: Thousands Oaks, California

- Concerns of dropping below certain power levels
 - o Manifold Electrolysis
 - Constant amount of Stray Current
 - Low level production, cannot dilute the opposite gas, combustible mixture
 - Must shut down current to the cell stack below that point
 - \circ Auxiliary Power
 - Must have minimum power levels for control power
 - Some systems need power for electrolyte pumps
 - UPS for control power minimum, possibly for pumps for short periods
- Effect on Efficiency
 - Electrolyte Temp Intermittent Operation may allow to cool

- Rapid changes in power level/gas generation could cause problems with
 - Differential Pressure control
 - Electrolyte Level control
 - System Pressure
 - need back pressure regulators to avoid dropping to low
- Power Level above maximum
 - Must Size the system properly for power input
 - o Charge large battery

- Operational Mode
 - Industrial Applications Demand Following
 - Renewable Energy Applications Load Following
 - Different type of control is needed
 - $\circ~$ Setting of Controls
- Maintenance
 - Continuous Operation Less Stress on Mechanical Parts
 - Intermittent More Pressure and Thermal Cycling, reduces Life of Parts

NERGY SYSTEMS Everywhere**you**look

Ο

Ο

0

Efficiency Balances

- Caustic, Higher Temperature, Oxygenated, Electrochemical Reactions Prime for Corrosion Ο
- Must use materials that can withstand- Higher Cost Ο
 - Low Carbon Stainless Steel •
 - Nickel or Nickel Plated •
 - Advanced Polymers

Concentration Gradient

Instrumentation and Controls, Vessels, Piping more specialized

Too much concentration difference drives efficiency • down

Higher Temperature – More Efficient but Faster Corrosion

Too much mixing of electrolyte from both sides ٠ causes high h2-in-o2 and o2-in-h2

MANAGING CONCENTRATED KOH

- Must have special or complex sealing methods
 - KOH has a very low surface tension, it can leak through very small gaps
 - Cannot use NPT pipe thread in KOH loop
 - Careful around any electrical connections
 - Magnetically-Coupled Pumps
 - O-rings and Gaskets material must be compatible

- Must ensure no high-pressure leaks and that the system is shielded for safety
- Must use care when handling for maintenance
 - o PPE
 - Neutralizing solutions available
 - Proper Mixing Water first

MANUFACTURING CHALLENGES

- Must Use 316L Stainless
 Threads and hardware gall easily
- Pressure vessels
 - ASME Stamped
 - o Quality Control system
- Skilled welders

- Details must be cleaned very well
 - O2 Cleaning
 - Contamination
 - Welding Properly
 - Sealing Properly
- Skilled Assemblers
 - Precision work to avoid leaks
 - Proper swaging of compression fittings

OTHER CHALLENGES / OPPORTUNITIES

- Differential Pressure control system must be more complex
 - Must keep Hydrogen and Oxygen near same pressure 0
 - If Electrical, must use UPS 0

Differential Pressure Control System

- Configuration: Must keep cell stack flooded so phase separation best to be above
- Heat Control
 - Balance between current density/size and cooling method
 - Heat Exchangers 0
- DC Electrical bussing becomes more difficult with size
 - Bus Bars vs. Cable \cap
 - More Space 0
 - Cost of Copper Ο
- Water Purity Level not as high as PEM
 - Research into contaminated water, sea water

