Heating Up: Advances in Concentrating Solar-Thermal Power

Garrett Nilsen, Acting Director for the U.S. Department of Energy Solar Energy Technologies Office (SETO)
Avi Shultz, SETO Concentrating Solar-Thermal Power Program Manager

February 10, 2022
Welcome and Logistics

• This event is being recorded
• Slides, recording, and transcript will be available on energy.gov/seto-webinars
• Submit questions in the chat
• For technical difficulties, chat or email Jamal Ferguson (jamal.ferguson@ee.doe.gov)
Our mission is to accelerate the development and application of technology to advance low-cost, reliable solar energy in the U.S.

To achieve this mission, solar energy must:

- Be **affordable** and **accessible** for all Americans
- Support the **reliability**, **resilience**, and **security** of the grid
- Create a sustainable industry that **supports jobs**, **manufacturing**, and the **circular economy** in a wide range of applications
Driving Toward Administration Decarbonization Goals

- **Reduce hardware and soft costs** of solar electricity for all Americans to enable an affordable carbon-free power sector by 2035.

- Enable inverter-based technologies to provide essential grid services and black start capabilities while demonstrating the **reliable, resilient and secure operation of a 100% clean energy grid**.

- **Accelerate solar deployment and associated job growth** by opening new markets, reducing regulatory barriers, providing workforce training, and growing U.S. manufacturing.

- **Center energy justice** by reducing environmental impacts, removing barriers to equitable solar access, and supporting a diverse and inclusive workforce.

- **Support a decarbonized industrial sector** with advanced concentrating solar-thermal technologies and develop affordable renewable fuels produced by solar energy.
Solar Energy Technologies Office Leadership Team

Becca Jones-Albertus
*Director (on detail to Advanced Manufacturing Office)*

Garrett Nilsen
*Acting Director*

Paul Basore
*Chief Scientist*

Markus Beck
*Manufacturing and Competitiveness Program Manager*

Michele Boyd
*Strategic Analysis and Institutional Support Program Manager*

Sheila Moynihan
*Operations Supervisor*

Avi Shultz
*Concentrating Solar-Thermal Power Program Manager*

Nicole Steele
*Workforce and Equitable Access Program Manager*

Lenny Tinker
*Photovoltaics Program Manager*

Guohui Yuan
*Systems Integration Program Manager*
New Funding for Concentrating Solar-Thermal Power (CSP) and Photovoltaics

$25M for 8-15 projects that develop:
- CSP for carbon-free industrial processes
- High-efficiency CSP plant designs with low-cost thermal storage

Concept paper deadline: March 16, 5:00 p.m. ET
Info webinar: February 24, 2:00 p.m. ET

$5M for 15-23 seedling projects in photovoltaics and concentrating solar-thermal power that accelerate large-scale development and deployment of solar technology

Letter of intent deadline: February 28, 5:00 p.m. ET
Recent Announcements and Achievements

- SETO released the “Solar Power in Your Community” guidebook to help local governments unlock benefits of increased solar deployment

- SolarAPP+ (Solar Automated Permit Processing Plus) released pilot results:
  - Reduced average permit review time to <1 day
  - Enabled projects to be installed and inspected 12 days faster
  - Saved communities 2,000+ hours of staff time

- The National Community Solar Partnership held its second annual summit
  - Discussed 2025 target of 5 million households powered by community solar, $1B energy bill savings
  - Energy Secretary Jennifer Granholm announced a new States Collaborative, the Credit Ready Solar Initiative, and increased funding for technical assistance

- SolSmart announced progress towards goal of 60 new SolSmart-designated communities in 6 months
Study Overview

PURPOSE

• Comprehensive review of the potential role of \textit{solar} in decarbonizing the electricity grid by 2035 and the energy system by 2050.
  
  – Addresses other large trends and activities across the U.S. economy that are necessary to achieve a zero-carbon energy system.
  
  – Builds analytical foundations to guide the next decade of solar research.

SCOPE

• Chapters cover future scenarios, technology advances, equity, grid integration, cross-sector interactions, supply chain, and environmental impacts.
Solar Futures Study: Key Results

1. **Deploy, deploy, deploy.** We must install an average of 30 GW of solar capacity per year between now and 2025 and 60 GW per year from 2025-2030. (In 2020 the U.S. installed 15 GW.)
   - 1,000 GW of solar meets 40% of electric demand in 2035, 1,600 GW meets 45% in 2050.
   - We must reshape workforce development, supply chains, siting and permitting, and regulation.
   - Major growth in wind and storage are also required.

2. **With continued technological advances, electricity prices do not increase through 2035.**
   This includes solar, wind, energy storage, and other technologies.

3. **The grid will be reliable and resilient.** Storage, transmission, and flexibility in load and generation are key.

4. **Expanding clean electricity supply yields deeper decarbonization.** Electrifying buildings, transportation, and industry reduces carbon emissions.

5. **Policy changes are necessary.** Limits on carbon emissions and/or clean energy incentives.
U.S. Energy Mix 2020-2050

The U.S. Electric Grid in 2020
- **Solar**: 3% of electricity demand, 80 gigawatts AC installed
- **Fossil Fuels**
- **Other Zero-Carbon**

3,800 TWh 1.45 Gt CO₂/year

95% Decarbonized Grid in 2035
- **Solar**: 40% of electricity demand, 1,000 gigawatts installed
- **2035 Generation Mix**
  - 4,900 TWh 0.1 Gt CO₂/year

Decarbonized Grid in 2050
- **Solar**: 45% of electricity demand, 1,600 gigawatts installed
- **2050 Generation Mix**
  - 6,700 TWh Zero Grid Emissions

End Uses
- Buildings
- Industry
- Transportation

3,000 GW in decarbonized energy system
How much land will be required to achieve the scenarios?
Stay Connected with SETO

SETO is seeking project reviewers!

• Find out how to express your interest and more details on areas of expertise at bit.ly/seto-reviewer

Find out about new funding as soon as it’s released

• Sign up for our Funding Notices mailing list at bit.ly/eere-funding

Congratulations to our newest SETO awardees!

• Fiscal Year 2021 Photovoltaics and Concentrating Solar-Thermal Power
• Connected Communities
• American-Made Solar Prize Round 4 Winners
• American-Made Solar Prize Round 5 Quarterfinalists
Concentrating Solar-Thermal Power (CSP)
Dr. Avi Shultz, Program Manager

- **Oil-Based Troughs with steam rankine cycle (390 °C)**
- **Molten Salt Towers with steam rankine cycle (565 °C)**
- **‘Gen 3 CSP’: Novel Heat Transfer Media with advanced power cycle (>700 °C)**
Documenting CSP Best Practices

Mehos, et al., 2020, NREL/TP-5500-75763
Congratulations to the SETO FY2022 CSP FOA Awardees!

### Research in Equipment For Optimized and Reliable Machinery (CSP REFORM)

- **Performance Optimization of Sold Particle TES Heat Exchanger by Combining Benefit of Extended Surfaces and Particle Fluidization**
  - Brayton Energy | $1.9 million

### Process Enhancement and Refinement For Operations, Reliability, and Maintenance (CSP PERFORM)

- **Improved O&M Reliability for CSP Plants through Application of Steam Generator Damage Mechanisms Theory & Practice**
  - Electric Power Research Institute | $1.9 million

- **Improved Design Standard for High Temperature Molten Nitrate Salt Tank Design**
  - IDOM | $2 million

- **CSP Plant Optimization Study for the California Power Market**
  - Solar Dynamics | $1 million

  - Solar Dynamics | $450,000

- **Evaluation of High-Temperature Sensors for Molten Solar Salt Applications**
  - Sporian Microsystems | $1 million

- **Performance Improvement in CSP Plant Operations**
  - University of Wisconsin – Madison | $1.6 million

### Scalable Outputs for Leveraging Advanced Research on Receivers & Reactors (SOLAR R&R)

- **Silicon-Carbide Receiver/Reactor by Additive Manufacturing for Concentrated Solar Thermocatalysis with Thermal Energy Storage**
  - Dimensional Energy | $2.7 million

  - General Electric Company, GE Research | $2.6 million

- **Light Trapping, Enclosed Planar-Cavity Receiver for Heating Particles to Enable Low-Cost Energy Storage and Chemical Processes**
  - National Renewable Energy Laboratory | $3 million

- **Scalable, Infiltration-Free Ceramic Matrix Composite (CMC) Manufacturing for Molten Salt Receiver**
  - Palo Alto Research Center | $2.5 million

- **Intensified Solar Reactor for Green Ammonia Manufacture and Gen3 Thermochemical Energy Storage**
  - Texas Tech University | $2 million

- **Design and Manufacturing of Transparent Refractory Insulation for Next-Generation Receivers**
  - University of Michigan | $2.5 million
Progress and Goals: 2030 CSP Goal

The office’s 2030 cost targets for CSP baseload (≥12 hours of storage) plants will help make CSP competitive with other dispatchable generators.
Heliostat Consortium

Objectives of the $25 million consortium:

- Develop strategic roadmaps for improving the cost and performance of commercial heliostats, to substantially reduce the cost of capturing solar-thermal energy
- Develop key testing capabilities to validate and optimize industrial heliostat technologies
- Fund collaborative research on heliostat innovation
- Form U.S. centers of excellence focused on heliostat technology
- Promote workforce development of the next generation of CSP researchers and industry
In March 2021, SETO announced that Sandia would receive $25 million to construct a MW-scale test facility at the National Solar Thermal Test Facility in Albuquerque, NM.
Gen3 CSP: Pathway Selection

**TOPIC 1**

* Sandia National Laboratories

**Strengths:**

- System simplicity for construction, operation, and reliability
- Wide operating range and opportunity for further temperature increases
- Potential relevance to other solar thermal applications

**Remaining Gaps:**

- Receiver optimization (also for controlled environments)
- Particle cost
- Demonstrations of flow control and particle handling at scale
- Increasing system ΔT
Gen3 CSP: Future Needs for Liquid and Gas Pathways

• Liquid Pathway
  - Chloride salt is a promising low-cost TES media for multiple applications
  - Validation of TES tank designs and chloride corrosion detection and controls
  - Sodium receivers integrated with nitrate salt TES may lead to future adoption of chlorides

• Gas Pathway
  - More testing needed to validate reliability of receivers for high-flux applications
  - Particle TES design, and particle-to-gas HXer could benefit a wide variety of future applications
  - System designs needed to minimize pressure drop
Solar Thermal for Decarbonization of Industrial Process Heat

Priority Research Areas

• Reduce the levelized cost of heat, with thermal energy storage, in temperature ranges of high priority to industrial processes
  • Roughly $0.02/kWh_{th} would be competitive with natural gas
• Improve the thermal efficiency of solar-thermal-coupled processes
• Develop long-duration, thermochemical storage of solar energy (i.e. solar fuels and chemical commodities)
## Congratulations to the SETO FY2022 CSP FOA Awardees!

<table>
<thead>
<tr>
<th>Research in Equipment For Optimized and Reliable Machinery (CSP REFORM)</th>
<th>Scalable Outputs for Leveraging Advanced Research on Receivers &amp; Reactors (SOLAR R&amp;R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Optimization of Solid Particle TES Heat Exchanger by Combining Benefit of Extended Surfaces and Particle Fluidization</td>
<td>Silicon-Carbide Receiver/Reactor by Additive Manufacturing for Concentrated Solar Thermocatalysis with Thermal Energy Storage</td>
</tr>
<tr>
<td>Brayton Energy</td>
<td>Dimensional Energy</td>
</tr>
<tr>
<td>Improved O&amp;M Reliability for CSP Plants through Application of Steam Generator Damage Mechanisms Theory &amp; Practice</td>
<td>General Electric Company, GE Research</td>
</tr>
<tr>
<td>Electric Power Research Institute</td>
<td><strong>Light Trapping, Enclosed Planar-Cavity Receiver for Heating Particles to Enable Low-Cost Energy Storage and Chemical Processes</strong></td>
</tr>
<tr>
<td>Improved Design Standard for High Temperature Molten Nitrate Salt Tank Design</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td>IDOM</td>
<td>$2 million</td>
</tr>
<tr>
<td><strong>CSP Plant Optimization Study for the California Power Market</strong></td>
<td><strong>Scalable, Infiltration-Free Ceramic Matrix Composite (CMC) Manufacturing for Molten Salt Receiver</strong></td>
</tr>
<tr>
<td>Solar Dynamics</td>
<td>Palo Alto Research Center</td>
</tr>
<tr>
<td>Solar Dynamics</td>
<td>Texas Tech University</td>
</tr>
<tr>
<td><strong>Evaluation of High-Temperature Sensors for Molten Solar Salt Applications</strong></td>
<td><strong>Design and Manufacturing of Transparent Refractory Insulation for Next-Generation Receivers</strong></td>
</tr>
<tr>
<td>Sporian Microsystems</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>$450,000</td>
<td></td>
</tr>
<tr>
<td><strong>Performance Improvement In CSP Plant Operations</strong></td>
<td><strong>Performance Improvement in CSP Plant Operations</strong></td>
</tr>
<tr>
<td>University of Wisconsin – Madison</td>
<td>University of Wisconsin – Madison</td>
</tr>
<tr>
<td></td>
<td>$1.6 million</td>
</tr>
</tbody>
</table>
CSP and Long-Duration Energy Storage

Reduce storage costs by 90% from a 2020 Li-ion baseline...

...in storage systems that deliver 10+ hours of duration...

...in 1 decade...

TES has a low marginal cost of additional energy capacity/duration

Electro-Thermal Energy Storage operating globally
Congratulations to the SETO FY2022 CSP FOA Awardees!

<table>
<thead>
<tr>
<th>Small Innovative Projects in Solar (SIPS) – CSP</th>
<th>Pumped Thermal Energy Storage (PTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated Solar Thermal Fuels Production by Electric Field Enhanced Two-Step Gas Splitting</td>
<td>Development of Gas Bearings for Supercritical Carbon Dioxide Recompression Brayton Cycle</td>
</tr>
<tr>
<td>Arizona State University</td>
<td>University of Nevada – Las Vegas</td>
</tr>
<tr>
<td>Technology for Electrically Enhanced Thermochemical Hydrogen</td>
<td>Innovative Technology for Continuous, Online (In Situ) Monitoring of Corrosivity of Molten Salts to Prevent Catastrophic Failure of Solar Thermal Plants</td>
</tr>
<tr>
<td>Arizona State University</td>
<td>University of Nevada – Reno</td>
</tr>
<tr>
<td>In-Operando Thermal Transport Characterization of Moving Particle Bed Heat Exchanger</td>
<td>Low-Cost Heliostat for High-Flux Small-Area Receivers</td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>University of Nevada – Reno</td>
</tr>
<tr>
<td>High-Temperature Permanent Magnet-Biased Active Magnetic Bearing Development for Supercritical Carbon Dioxide Machinery Applications</td>
<td>Development and Experimental Optimization of High-Temperature Modeling Tools and Methods for Concentrated Solar Power Particle Systems</td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td>University of Dayton</td>
</tr>
<tr>
<td>Spectral and Temperature-Dependent Optical Metrology: Towards More Robust, Effective and Durable Materials for Concentrated Solar Power</td>
<td>Characterization of Inlet Guide Vane Performance for Discharge Compressor Operation near the Dome of an sCO₂ Pumped Heat Electricity Storage</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>Southwest Research Institute</td>
</tr>
<tr>
<td>Development of a Multiphase-Tolerant Turbine for Pumped Thermal Energy Storage</td>
<td>Advanced Ice Slurry Generation System for a Carbon Dioxide–Based Pumped Thermal Energy Storage System</td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td>Echogen Power Systems</td>
</tr>
<tr>
<td>Characterization of Inlet Guide Vane Performance for Discharge Compressor Operation near the Dome of an sCO₂ Pumped Heat Electricity Storage</td>
<td>Development of a Multiphase-Tolerant Turbine for Pumped Thermal Energy Storage</td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td>$2.4 million</td>
</tr>
</tbody>
</table>
Congratulations to the SETO FY2022 CSP FOA Awardees!

<table>
<thead>
<tr>
<th>Small Innovative Projects in Solar (SIPS) – CSP</th>
<th>Development of Gas Bearings for Supercritical Carbon Dioxide Recompression Brayton Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated Solar Thermal Fuels Production by Electric Field Enhanced Two-Step Gas Splitting</td>
<td>University of Nevada – Las Vegas</td>
</tr>
<tr>
<td>Arizona State University</td>
<td>$310,000</td>
</tr>
<tr>
<td>Technology for Electrically Enhanced Thermochemical Hydrogen</td>
<td>Innovative Technology for Continuous, Online (In Situ) Monitoring of Corrosivity of Molten Salts to Prevent Catastrophic Failure of Solar Thermal Plants</td>
</tr>
<tr>
<td>Arizona State University</td>
<td>$400,000</td>
</tr>
<tr>
<td>In-Operando Thermal Transport Characterization of Moving Particle Bed Heat Exchanger</td>
<td>Low-Cost Heliostat for High-Flux Small-Area Receivers</td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>University of Nevada – Reno</td>
</tr>
<tr>
<td>$400,000</td>
<td>$400,000</td>
</tr>
<tr>
<td>High-Temperature Permanent Magnet-Biased Active Magnetic Bearing Development for Supercritical Carbon Dioxide Machinery Applications</td>
<td></td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td></td>
</tr>
<tr>
<td>$400,000</td>
<td></td>
</tr>
<tr>
<td>Development and Experimental Optimization of High-Temperature Modeling Tools and Methods for Concentrated Solar Power Particle Systems</td>
<td></td>
</tr>
<tr>
<td>University of Dayton</td>
<td></td>
</tr>
<tr>
<td>$400,000</td>
<td></td>
</tr>
<tr>
<td>Spectral and Temperature-Dependent Optical Metrology: Towards More Robust, Effective and Durable Materials for Concentrated Solar Power</td>
<td></td>
</tr>
<tr>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>$240,000</td>
<td></td>
</tr>
<tr>
<td>Development of a Multiphase-Tolerant Turbine for Pumped Thermal Energy Storage</td>
<td></td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td></td>
</tr>
<tr>
<td>$2.4 million</td>
<td></td>
</tr>
</tbody>
</table>

Pumped Thermal Energy Storage (PTES)

| Advanced Ice Slurry Generation System for a Carbon Dioxide-Based Pumped Thermal Energy Storage System           |
| Echogen Power Systems                                         |                                                                                       |
| $1.2 million                                                   |                                                                                       |
| Characterization of Inlet Guide Vane Performance for Discharge Compressor Operation near the Dome of an sCO₂ Pumped Heat Electricity Storage |
| Southwest Research Institute                                  |                                                                                       |
| $500,000                                                        |                                                                                       |
| Development of a Multiphase-Tolerant Turbine for Pumped Thermal Energy Storage                                    |
| Southwest Research Institute                                  |                                                                                       |
| $2.4 million                                                   |                                                                                       |
Advanced Power Cycles

Programmatic Objectives

• Develop and demonstrate supercritical CO\textsubscript{2} power blocks consistent with > 50% net thermal-to-electric efficiency, including:
  • Turbomachinery
  • Recuperators
  • Air cooling capability
  • Primary heat exchangers integrated with TES
• Validate turbomachinery at MW\textsubscript{e} scale
• Support R&D on materials and manufacturing to reduce cost to < $900 kW\textsubscript{e} for systems with turbine inlet temperature > 700 °C
• Demonstrate commercially-relevant systems – with existing materials – at turbine inlet temperature approx. 600°C
Integrated TESTBED (Thermal Energy Storage and Brayton Cycle Equipment Demonstration)

**TESTBED**
- First-of-a-Kind sCO\(_2\) facility integrated with TES; heat input from solar field
- 5 MW\(_e\) sCO\(_2\) cycle at 600°C turbine inlet
- Heat input from 36,000 heliostats, 26.3 MW\(_{th}\)
- 3 receivers 13.4 MW\(_{th}\) each, supply heat for 8 hour, 213 MWh\(_{th}\) solid particle TES

**TESTING CAPABILITY**
- Recompression Brayton Cycle (RCBC) operation
- RCBC control and integration with TES
- Turbomachinery durability and operation
- FOAK TES and heat exchanger
Development, Build and Operation of a Full-Scale, Nominally 5MWe, Supercritical CO$_2$ Power Cycle Coupled with Solid Media Energy Storage

Submitted by
Heliogen Inc.
Pasadena, CA 91103

Technical Point of Contact
Dr. Chiranjeev Kalia (Principal Investigator)

Business Point of Contact
Mr. Vikas Tuteja
OBJECTIVE

Development, Build and Operation of a Full-Scale, Nominally 5MWe, Supercritical CO₂ Power Cycle Coupled with Solid Media Energy Storage

- Thermal energy storage using sensible energy storage in solid media
- sCO₂ RCBC heat engine with air cooling
- Demonstrate the integrated performance of all the heat exchangers in an indirectly heated sCO₂ cycle
- Perform a testing campaign and data validation necessary to generate commercial confidence in operational standards for sCO₂ power blocks

Power Block Efficiency Roadmap >39%
TIT < 630°C
CAPEX Roadmap <$900/kWe
Air-cooled
>1,000 hours of testing
Demonstrate fast-transients and load following capability
>5% load ramp per minute from cold start
Concentrated Solar Power – Modular, Long Duration Storage

- Build on state-of-the-art sCO₂ power cycle developments: SunShot, Apollo, STEP
- Leverage solid media based thermal storage solutions
- Integrated system development and risk retirement testing followed by commercial operation
- Overall approach guided by Voice of Customer
Towards SETO CSP Target
Product Development and Commercialization Plan

- Thermal energy storage coupled with CSP already competitive with natural gas for thermal applications
- CSP electricity production enables long duration energy storage in thermal storage systems and seasonal storage in chemical fuels like Hydrogen

MOTIVATION

Product block diagram: Integrated, hybrid, modular solar power plant with daily and long duration storage

STAGE 1
DOE SETO 2020 Proposal
42-month performance period to build and operate the 1st power plant

STAGE 2
Autonomous manufacturing and scale-up of production

STAGE 3
Incremental technology and cost improvements
MOTIVATION

Demonstration Plant: Small Modular Power Block Size

Examples:

Simple cycle gas turbines don’t necessarily need larger scales to provide optimal product configurations

- LM2500 and LM6000 aero-derivatives used in power generation haven’t scaled-up while the original aviation engines have evolved into GE90 (90MWe), GE9X (110MWe), etc.

Combined Cycle power plants have scaled to larger sizes due to limitations of Steam cycles

- Steam power plants don’t scale down well (locative engines with few 100-kW power are a good example
- Combined cycle power plants are designed for optimal performance of both steam and Brayton cycles at the same size – easy to achieve at larger scales, single steam cycles are often coupled with multiple GT’s

References:
In addition to providing 24-7 power for industrial customers, modular power block enables:

• Ease of project financing and rapid installation: frequent design iteration capability
• Project size: small modular: most developers can participate
• Ease of permitting with lower environmental risk: higher efficiency fields, smaller & flexible land requirements
System Design and Development:

**Heliogen to lead systems design**
- Close collaboration with sub-system OEMs
- Optimization for net product value (cost versus performance) with emphasis on roadmap

**Transient systems design**
- The team will develop design point and off-design performance maps to deliver optimal product configuration metrics and requirements

**Requirements Management**
- With traceability, risk assessment, mitigation planning, change management, and frequent communication due to integral (system) nature of the product

---

**Power Block Efficiency**
- Roadmap >39%
- TIT < 630°C
- CAPEX Roadmap < $900/kWe
- Air-cooled
- >1,000 hours of testing
- Demonstrate fast-transients and load following capability
- >5% load ramp per minute from cold start
Technology Description:
**sCO₂ Power Block**

**Broad design range**
- 4-10 MWe modular, to 100+Mwe

**High efficiency**
- 39%+ possible with mostly SS construction

**Low operating cost**
- Potential for low utility design: no oil changes, remote operation, etc.

**Low specific cost**
- <$900/kWe possible with volume production

**Technology development risk**
- New technology in the market

**Raw material cost management**
- High pressure sCO₂ operation more likely to require high-cost alloys

**Operational risks**
- With machine reliability and integration with overall power plant
**INNOVATION, R&D, AND IMPACT**

**Power Block – TES Integration**

**Integrated Control Architecture**

- TES systems by definition have high thermal inertia.
- Conversely, sCO$_2$ power blocks, with their superior power density, have a very low mechanical (rotating) and thermal inertia to transients and can respond very fast.
- These systems need to be integrated into highly variable source and sinks.
- The proposed controls architecture will leverage an industrial Mark VIe controller from GE for integrated power block – TES control to meet the described unique requirements.
TEST SET-UP

TESTBED Heat Source: Heliogen CSP System

- Cost competitive with natural gas heat source
- Commercially demonstrated technology

TESTBED CSP Plan:

- Up to 48 MW\textsubscript{th}
- 50,300 small heliostats
- \~220-foot tower
Project Management Plan

Objective: Near 24-7 Renewable Power Generation for Industrial and other customers
Thank You
QUESTIONS
Thank you for attending!

- View today’s recording and slides at energy.gov/seto-webinars
- Find open SETO funding opportunities at bit.ly/seto-funding
- Sign up for funding notices at bit.ly/eere-funding
- Become a reviewer at bit.ly/seto-reviewer
- Browse all SETO events & webinars at energy.gov/seto-events

SIGN UP NOW: energy.gov/solar-newsletter