

U.S. DOE Hydrogen Production Program & LAWE Meeting

Dr. Sunita Satyapal (Director) & Dr. Ned Stetson (Program Manager), Hydrogen and Fuel Cell Technologies Office

Liquid Alkaline Electrolysis Experts Meeting, January 26-27, 2022

U.S. DEPARTMENT OF

ENERGY EFFICIENCY & RENEWABLE ENERGY

Office of

The U.S. DOE Hydrogen Program

Key DOE Hydrogen Authorizations in Energy Policy Act (2005, 2020) and Infrastructure Investment and Jobs Act (2021)

Hydrogen is one part of a broad portfolio of activities

www.hydrogen.energy.gov

Priorities

- 1. Low cost, clean hydrogen
- 2. Low cost, efficient, safe hydrogen delivery and storage
- 3. Enable end use applications at scale for impact

Workforce development, safety, codes, standards, and Environmental Justice priorities

Snapshot of Hydrogen and Fuel Cells in the U.S.

Electrolysis within H2@Scale

- Making, storing, moving and using H2 more efficiently are the main H2@Scale pillars and all are needed.
- Making H2 is the inherently obvious, first step to spur the wide-ranging benefits of the H2@Scale vision.
- Electrolysis has most competitive economics and balances increasing renewable generation challenges.
- Timeframe is short, competition intense, coordinated effort critical for domestic competitiveness.

Illustrative example, not comprehensive https://www.energy.gov/eere/fuelcells/h2-scale

Analysis Determines Market Potential Scenarios

President Biden and Energy Secretary Granholm at Climate Summit

"...I've asked the Secretary of Energy to speed the development of critical technologies to tackle the climate crisis. No single technology is the answer on its own because every sector requires innovation to meet this moment."

resident Joseph R. Biden April 23, 2021

Launch of Hydrogen Energy Earthshot First of the Energy Earthshots June 7, 2021 at DOE Hydrogen Program Annual Merit Review

> Secretary Jennifer Granholm June 7, 2021

Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

Bipartisan Infrastructure Law - Hydrogen Highlights

- **Covers \$9.5B** for clean hydrogen:
 - \$8B for at least four regional clean hydrogen hubs
 - \$1B for electrolysis research, development, demonstration, commercialization, and deployment
 - \$500M for clean hydrogen technology manufacturing and recycling R&D

President Biden Signs the Bipartisan Infrastructure Bill on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kilogram by 2026
- Requires developing a National Hydrogen Strategy and Roadmap

(e) FOCUS.—The program shall focus on research relating to, and the development, demonstration, and deployment of—

- (1) low-temperature electrolyzers, including liquid-alkaline electrolyzers, membrane-based electrolyzers, and other advanced electrolyzers, capable of converting intermittent sources of electric power to clean hydrogen with enhanced efficiency and durability;
- (2) high-temperature electrolyzers that combine electricity and heat to improve the efficiency of clean hydrogen production;
- (3) advanced reversible fuel cells that combine the functionality of an electrolyzer and a fuel cell;
- (4) new highly active, selective, and durable electrolyzer catalysts and electro-catalysts that—
 - (A) greatly reduce or eliminate the need for platinum group metals; and
 - (B) enable electrolysis of complex mixtures with impurities, including seawater;
- (5) modular electrolyzers for distributed energy systems and the bulk-power system (as defined in section 215(a) of the Federal Power Act (16 U.S.C. 824o(a)));

https://www.energy.gov/ sites/default/files/2021-12/h2iq-12082021.pdf

Pathways to Reduce the Cost of Electrolytic H₂

https://www.hydrogen.energy.gov/pdfs/review21/plenary7_stetson_2021_o.pdf

HFTO's Multi-layered Approach to Electrolyzer Development

Advanced Manufacturing (TRL 6-7) – RD&D on manufacturing processes and techniques suitable for highvolume manufacture of mega-watt scale electrolyzers and electrolyzer components

Advanced Components (TRL 4-5) – RD&D on integration of materials into components (e.g., catalysts into MEA) and components into systems (e.g., cells into stacks), developing an understanding of mechanisms and addressing performance barriers for PEM LTE and O²⁻ conducting HTE

Advanced Materials (TRL 1-3) – Foundational R&D on materials with improved performance and durability for water splitting technologies, including low and hightemperature electrolysis and direct thermochemical and photoelectrochemical technologies.

Industry-led RD&D projects competitively selected through Funding Opportunity Announcements,

coordinated with H2NEW

H2NEW National Laboratory-led research consortium on advance component development for low and high-temperature electrolysis

HydroGEN National Laboratory-led
research consortium on advance
materials development for water
splitting technologies

Approach flows from *foundational materials-development* addressing multiple technologies to *advanced integrated component development* to *advanced system manufacturing processes*

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Connecting H2NEW Activities to Liquid Alkaline Technology

Dr. Bryan Pivovar, Director of H2NEW, National Renewable Energy Laboratory

Advanced Liquid Alkaline Water Electrolysis Experts Meeting

January 26, 2022

Electrolyzers by Type

Туре	Pros	Cons	
Alkaline	Well established, lower capital cost,	Corrosive liquid electrolyte used, higher	1
	more materials choices at high pH, high	ohmic drop, lack of differential pressure	
	manufacturing readiness, can leverage	operation, shunt currents, limited	
	established supply chains, demonstrated	intermittency capabilities, efficiency	Low
	in larger capacity		Temperature
Polymer	Low ohmic losses/high power density	Requires expensive materials (Ti, Ir, Pt,	(0, 200 ⁰ C)
Electrolyte	operation, differential pressure	perfluorinated polymers), lower	$(0 - 200^{\circ}C)$
Membrane	operation, DI water only operation,	manufacturing and technology	
	leverages PEM fuel cell development and	readiness, efficiency	
	supply chain, load following capability		1
Solid Oxide	High efficiency, low-cost materials,	High temperature materials challenges,	1
	integration with continuous high	limited intermittency capabilities,	High
	temperature electricity sources (e.g.,	thermal integration, lower	Tomporaturo
	nuclear energy), leverages SOFC	manufacturing and technology	
	development and supply chain,	readiness, steam conversion and	(>500°C)
	differential pressure operation	separation challenges	

Badgett, Ruth and Pivovar, "Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis," accepted 2021.

Liquid Alkaline Water Electrolyzers

- Have not been the major domestic emphasis
- Received limited RD&D funding
- Have growing domestic (industrial) interest
- Have R&D needs to become/improve competitiveness
- Have a significant domestic basis from which to leverage
 - PEM electrolysis
 - Alkaline membrane electrolysis
 - Significant National Lab and Academic assets
- Purpose of this meeting is to start filling in these gaps

Liquid Alkaline Water Electrolysis Parallels to PEM/SOEC in H2NEW

<u>Goal</u>: H2NEW will address components, materials integration, and manufacturing R&D to enable manufacturable electrolyzers that meet required cost, durability, and performance targets, simultaneously, in order to enable \$2/kg hydrogen.

H2NEW (75% PEM, 25% SOEC) has a clear target of establishing and utilizing experimental, analytical, and modeling tools needed to provide the <u>scientific understanding of electrolysis cell performance, cost, and</u> <u>durability tradeoffs of electrolysis systems under predicted future operating modes.</u>

https://www.hydrogen.energy.gov/pdfs/review21/p196_pivovar_boardman_2021_o.pdf

LAWE R&D needs similar to PEM R&D Approach of H2NEW

- Durability (Task 1, P196a)
 - Establish fundamental degradation mechanisms
 - Develop accelerated stress tests
 - Determine cost, performance, durability tradeoffs
 - Develop mitigation
- Performance (Task 2, P196b)
 - Benchmark performance
 - Novel diagnostic development and application
 - Cell level models and loss characterization
- Scale-up (Task 3, P196a)
 - Transition to mass manufacturing
 - Correlate processing with performance and durability
 - Guide efforts with systems and technoeconomic analysis (Task 3c, P196d)

Lab Scale – Ultrasonic Spray

Ex situ characterization

Operando characterization/diagnostics

https://www.hydrogen.energy.gov/pdfs/review21/p196_pivovar_boardman_2021_o.pdf

Relevant Materials Development Efforts in HydroGEN

- Advanced materials and components are needed and related materials have been pursued through the HydroGEN and HydroGEN 2.0 Consortia.
- Academic, Industrial and National Lab coordination

Approach: HydroGEN 2.0 Project Added to LTE Activities

ANL Project

Nel Project

(PD155)

PI: K. Ayers

High Efficiency

HydroGEN LTE Projects

- 8 FOA projects with 41 nodes
 - 3 currently supported (in Accomplishments)
- 2 Supernodes with 14 nodes •
- LTE 2.0 with 4 nodes

https://www.hydrogen.energy.gov/pdfs/review21/p148a_alia_2021_p.pdf

Georgia Tech

(PD185)

PI: P. Kohl

Engineering Durable Low

Cost AEM Electrolyzers

LANL Project

(PD159)

PI: Y.S. Kim

Durable &

17

NEU Project

(PD156)

Meeting Objectives

Day 1 – Expert Presentations

Hear from experts on the challenges & opportunities for current & future liquid alkaline electrolyzer technologies

Learn the current state of the field

Day 2 – Parallel Discussions

Discuss and prioritize the most promising & impactful RD&D opportunities for next-generation liquid alkaline electrolyzers

Identify RD&D pathways to achieve \$1/kg

Please feel free to use the Zoom Q&A feature to record your comments & questions during the meeting

Thank You for Joining Us!

Special thanks to the Organizing Team...

HFTO	
Ned Stetson	
James Vickers	Bry
Dave Peterson	Sá
McKenzie Hubert	Rebec
Anne Marie Esposito	Jao
Nikkia McDonald	Ryar
Cassie Osvatics	

Bryan Pivovar Sara Havig Rebecca Martineau Jackie Petre Ryan Ingwersen

NREL

And all Moderators & Scribes!

Ahmed Farghaly Alexey Serov Andrew Tricker Colin Gore Debbie Myers Elliot Padgett Eric Miller Guido Bender Haoran Yu Julie Fornaciari Jason Keonhag Lee Marcelo Carmo Mark Ruth Plamen Atanassov Rangachary Mukundan Sandipkumar Maurya Shaun Alia Tobias Schuler

www.energy.gov/fuelcells www.hydrogen.energy.gov

h2new.energy.gov

Meeting Agenda* – Expert Presentations

11:00 AM	Welcome, Context, & Overview of Workshop Goals	DOE Hydrogen & Fuel Cell Technologies Office Bryan Pivovar, National Renewable Energy Laboratory	
11:30 AM	Introduction to Liquid Alkaline Electrolysis	Marcelo Carmo, Nel Hydrogen US	
12:15 PM	Cell & Stack Components (Interfaces & Corrosion Challenges)	Ed Revers, De Nora	
1:00 PM	System & Integration Challenges	Joe Poindexter, Teledyne	
1:30 PM	- Break -		
2:00 PM	Cell-level Challenges	Steven Kloos, AquaHydrex	
2:45 PM	Accelerated Stress Test (AST) Development	Rangachary "Mukund" Mukundan, Los Alamos National Laboratory	
3:30 PM	Component & System Technoeconomic Analysis	Brian James, Strategic Analysis	
4:15 PM	- Wrap-up and Adjourn -		

Moderators: Dave Peterson, *HFTO* James Vickers, *HFTO*

*All times in Eastern Standard Time