

DEC 2 – 3, 2020

Nanodispersion Strengthened Metallic Composites with Enhanced Neutron Irradiation Tolerance

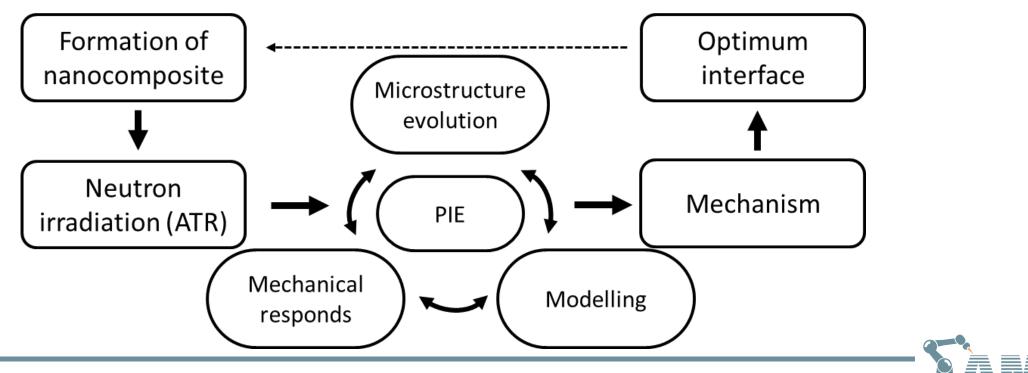
Award Number: DE-NE0008827

Award Dates: 10/2018 to 09/2021

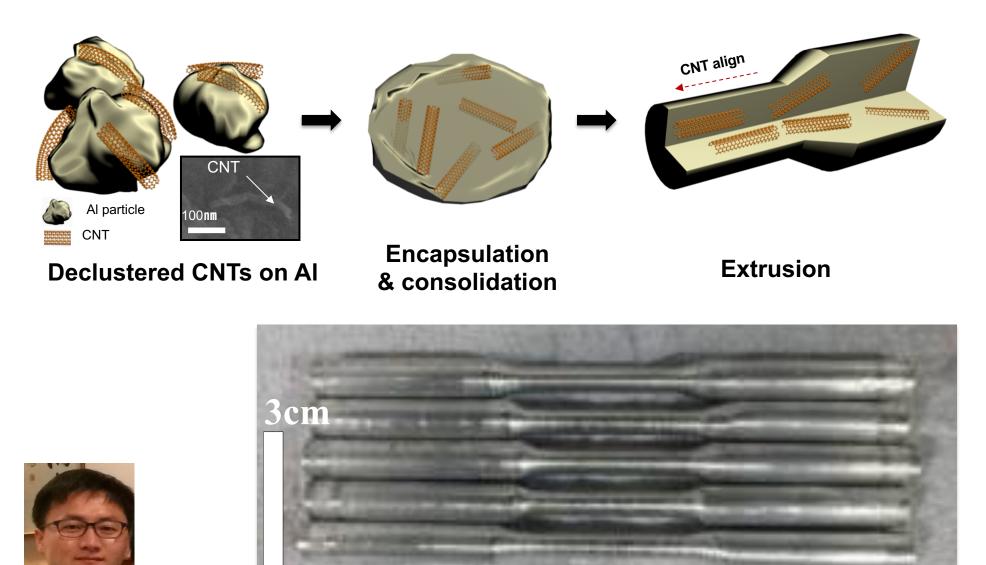
PI: Ju Li (MIT)

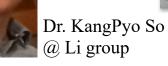
Collaborators: Cheng Sun, Mitch Meyer (INL), Kory Linton, Annabelle Le Coq, Xiang Chen, Ben Garrison (ORNL) Team Members: Mike Short, Kang Pyo So, So Yeon Kim, Alexander O'Brien, Myles Stapelberg

Project Objectives

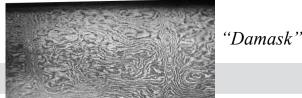

Manufacturing and pre-characterization of nanocomposites

- □ Neutron irradiation of nanocomposites in a test reactor
- □ Microstructure characterization by SEM/FIB/TEM
- Mechanical properties characterization by uniaxial tensile testing
- Mesoscale modelling of neutron irradiation of nanocomposite materials
- Establishing a general theory of neutron-nanocomposite interactions

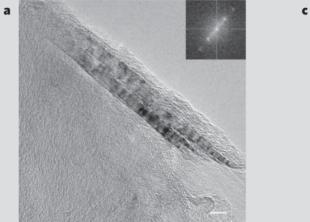


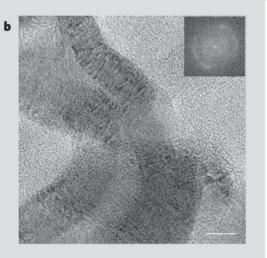

Scope of work

Neutron radiation of three capsules in High Flux Isotope Reactor (HFIR). TEM evaluation of 39 material conditions as summarized in Table. Mechanical testing of 39 materials conditions as summarized in Table. Atom probe tomography of 13 materials conditions as summarized in Table.



Aluminum/Carbon Nanotube composite


ASTM E8 tensile specimen



Carbon nanotubes in an ancient Damascus sabre

The steel of Damascus blades, which were first encountered by the Crusaders when fighting against Muslims, had features not found in European steels — a characteristic wavy banding pattern known as damask, extraordinary mechanical properties, and an exceptionally sharp cutting edge. Here we use high-resolution transmission electron microscopy to examine a sample of Damascus sabre steel from the seventeenth century and find that it contains carbon nanotubes as well as cementite nanowires. This microstructure may offer insight into the beautiful banding pattern of the ultrahigh-carbon steel created from an ancient recipe that was lost long ago.

It is believed that Damascus blades were forged directly from small cakes of steel (named 'wootz') produced in ancient India. A sophisticated thermomechanical treatment of forging and annealing was applied to these cakes to refine the steel to its exceptional quality. However, European bladesmiths were unable to replicate the process, and its secret was lost at about the end of the eighteenth century. It was unclear how medieval blacksmiths would have overcome the inherent brittleness of the plates of cementite (Fe₃C, a mineral known as cohenite) that form in steel with a carbon content of 1-2 wt%, as well as how the steel's *cast iron*?

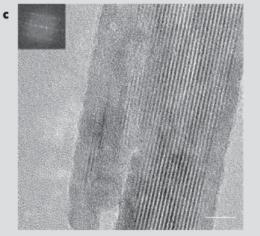
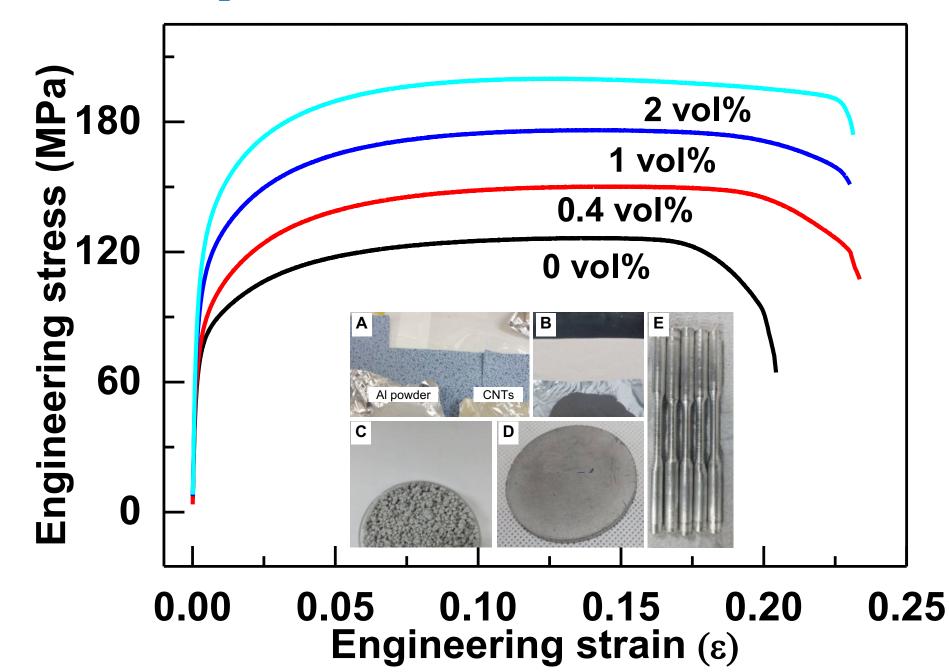
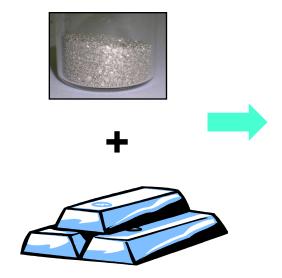
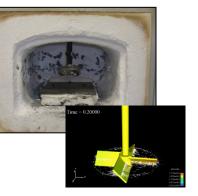



Figure 1 | High-resolution transmission electron microscopy images of carbon nanotubes in a genuine Damascus sabre after dissolution in hydrochloric acid. a, b, Multiwalled tubes with the characteristic layer distance $d \approx 0.34$ nm (ref. 12), as indicated by the Fourier transforms (see insets). Scale bars: 5 nm (a) and 10 nm (b). In b, the tubes are bent like a rope. c, Remnants of cementite nanowires encapsulated by carbon nanotubes, which prevent the wires from dissolving in acid. Scale bar, 5 nm. The fringe spacing of the wire is 0.635 nm, taken from the Fourier transform (inset), and is attributed to the (010) lattice planes of cementite.

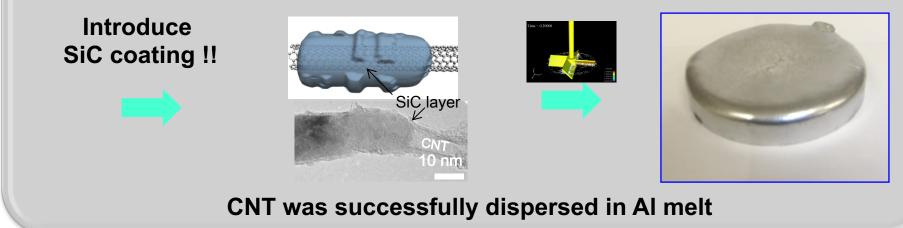

Superior Mechanical Performance



With Prof. Young Hee Lee at Sungkyunkwan University: "Ton-scale metal-carbon nanotube composite: The mechanism of strengthening while retaining tensile ductility," Kang Pyo So et al, *Extreme Mechanics Letters* **8** (2016) 245

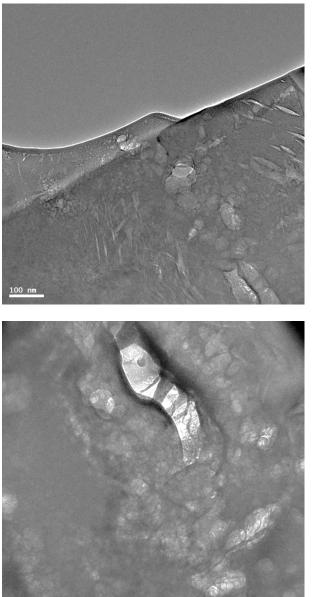
Wettability is Critical for Dispersion of CNT into Al

Melt blending

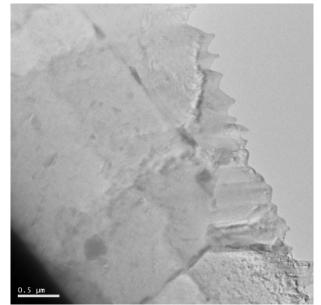


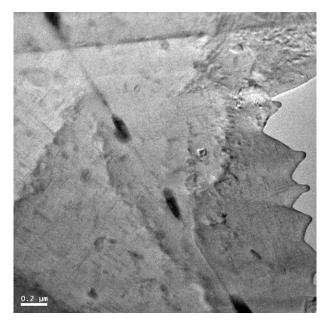
http://www.acusim.com/ images/gallery/startup.gif

Failed !!

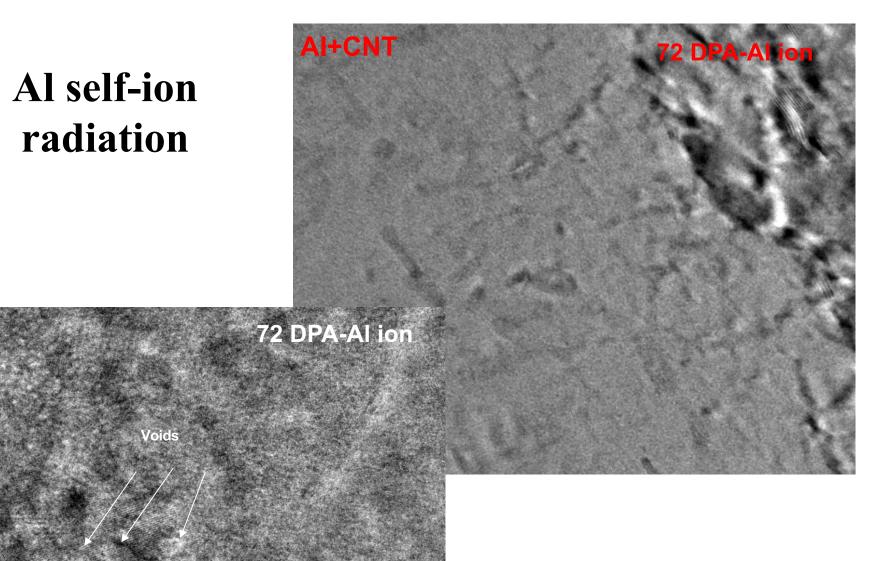


CNT dispersed!!

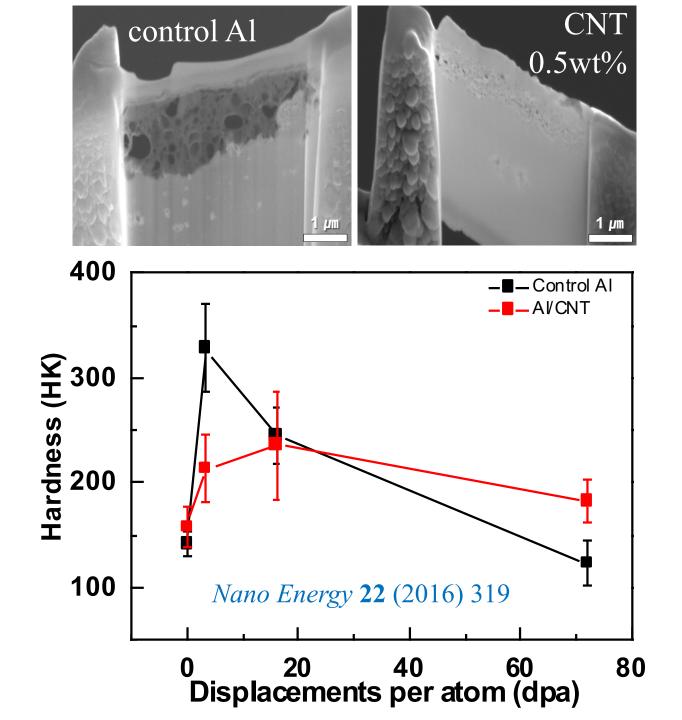




100keV He ion, fluence 10¹⁷/cm², peak dose 3.5 DPA

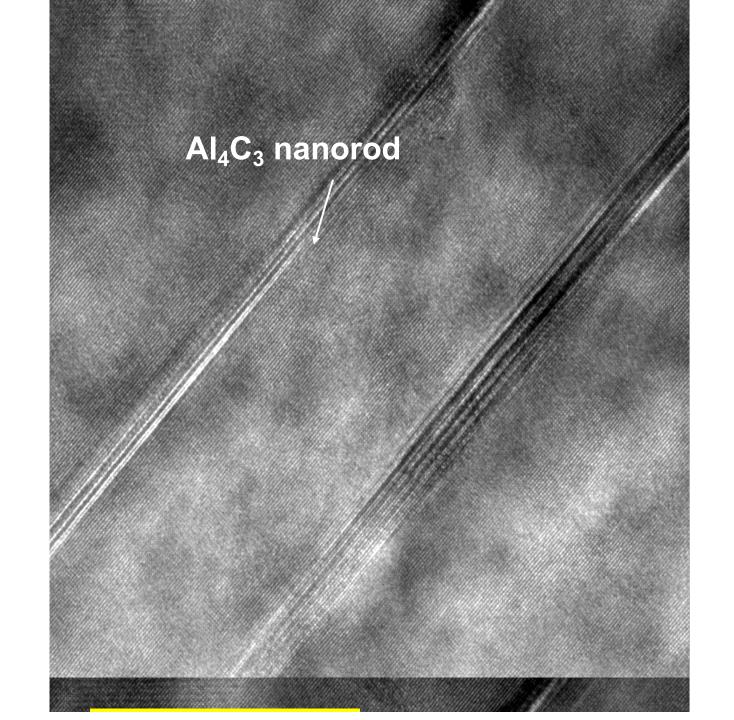


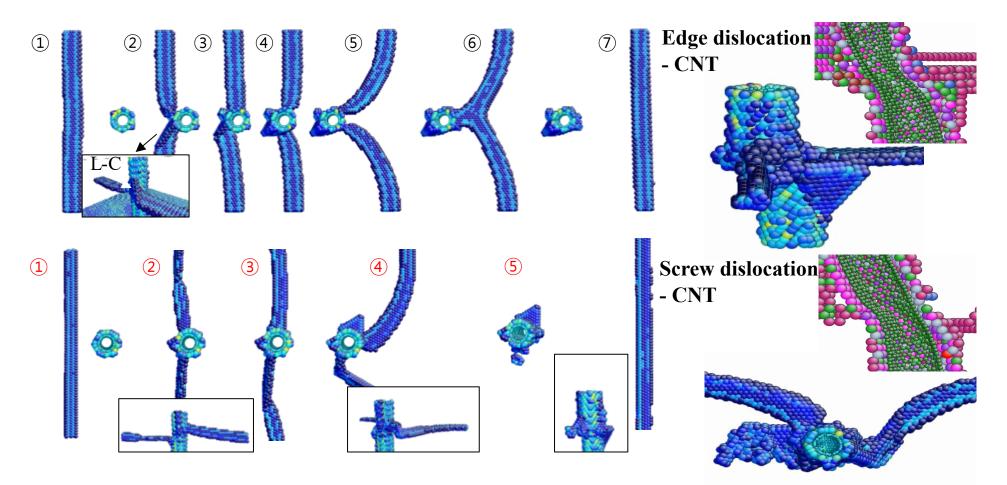
pure Al: pore size 5~50 nm


0.5wt%CNT/Al: no pore observed

20 nm

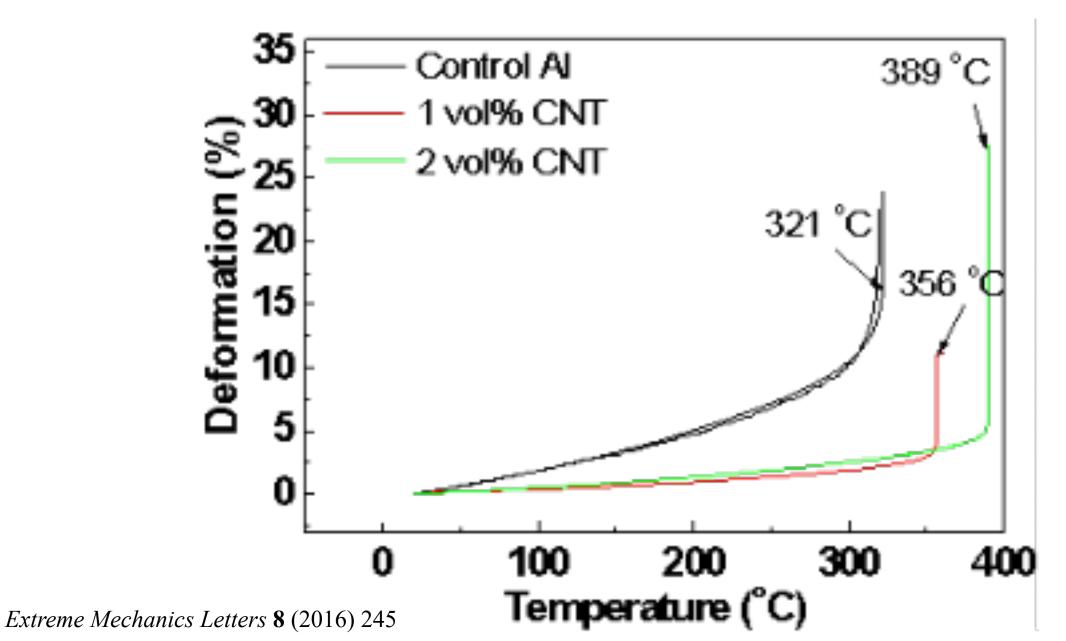
Nano Energy **22** (2016) 319

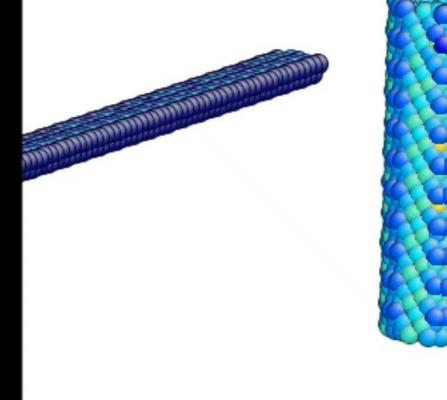

11

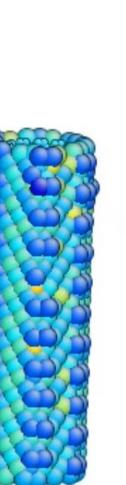

Al self-ion radiation

Carbon nanotube ↓ Tubular carbide

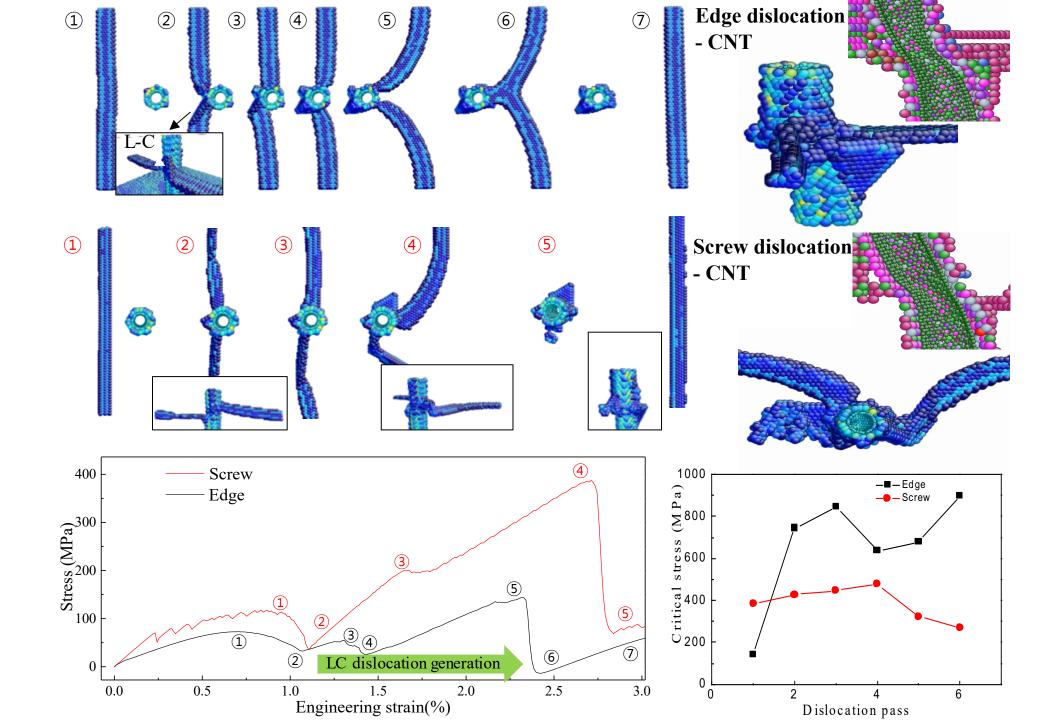
Nano Energy **22** (2016) 319

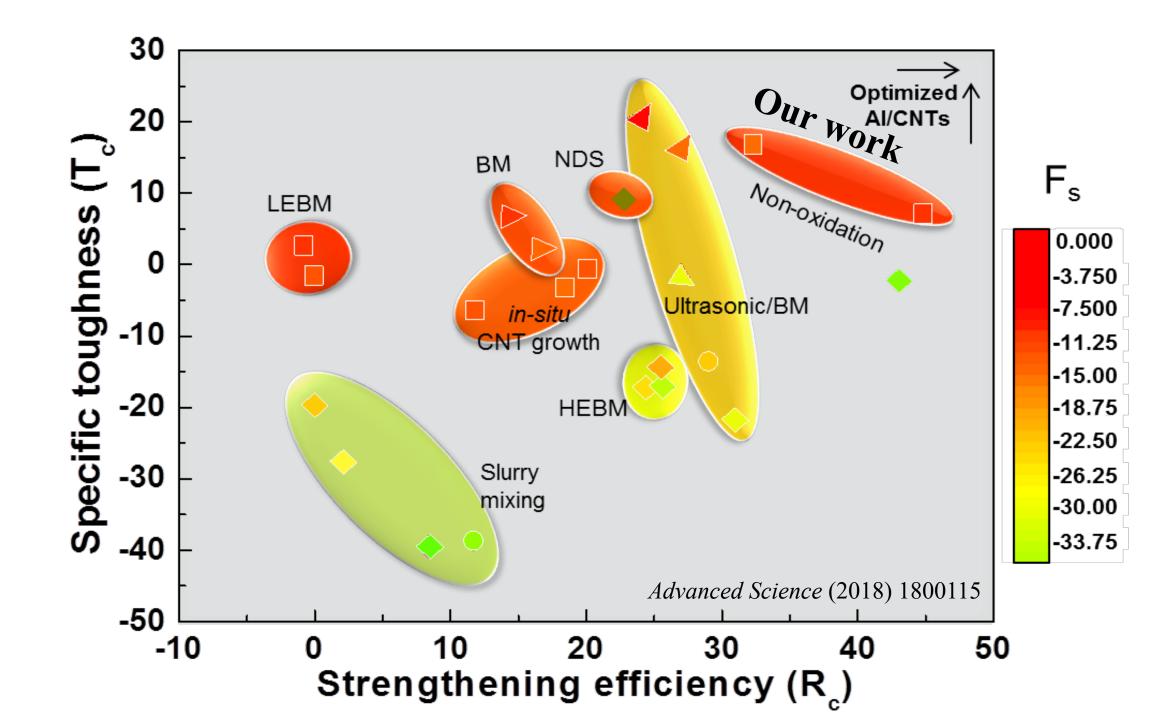


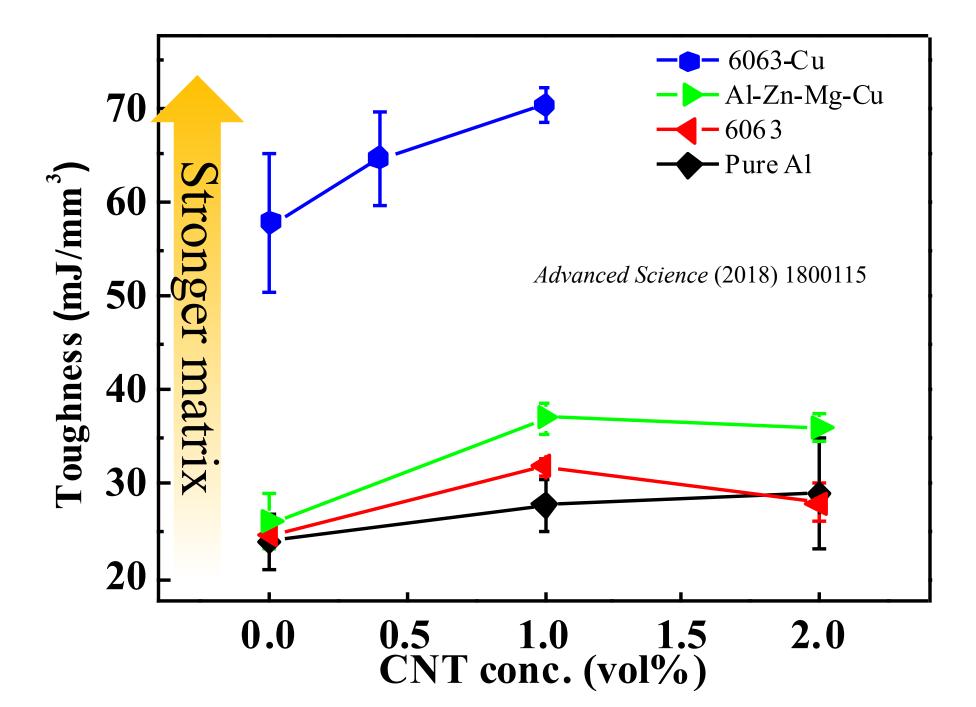

Enhanced Creep Resistance

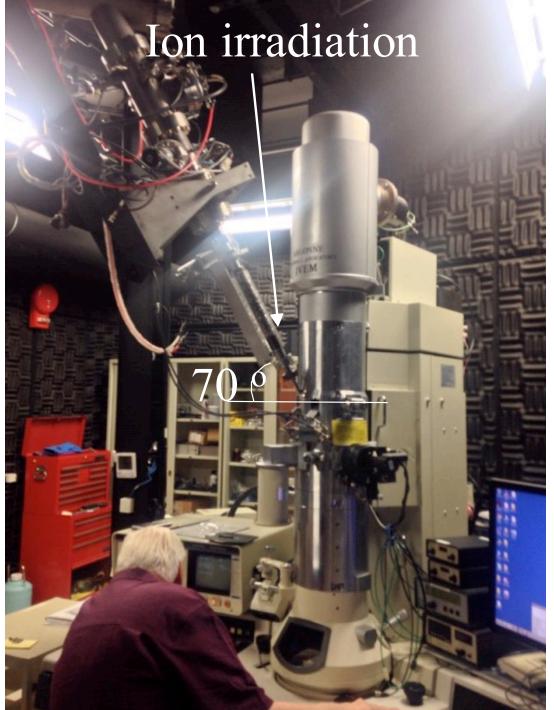


- Unlike 0D obstacle, dislocation **cannot climb over** 1D obstacle even at high temperatures
- 1D/2D obstacles **pin GB differently** from traditional Zener pinning theory


Enhanced Creep Resistance

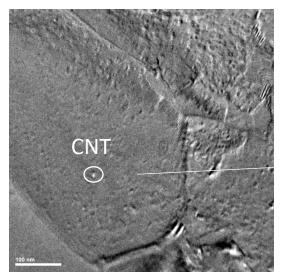




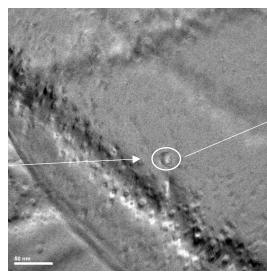


Screw dislocation in Al interacting with CNT $\rho_{CNT} \sim 10^{14}/m^2$ and act like forest dislocations "Taylordispersion" hardening

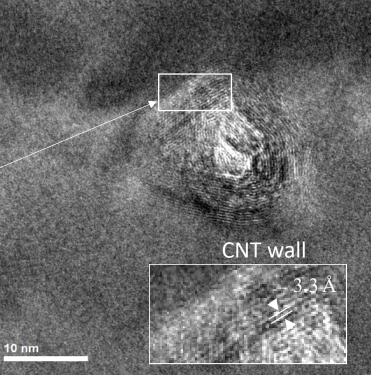
Argonne IVEM:

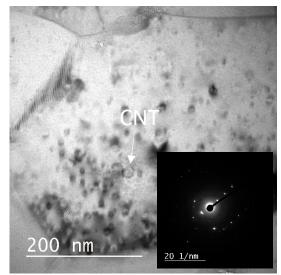

Kangpyo So, Mingda Li, Yang Yang, Meimei Li, June 2016

Hitachi-9000 TEM 150 keV e-beam; 70keV-1MeV Kr ion

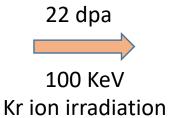

 25° C to 400° C

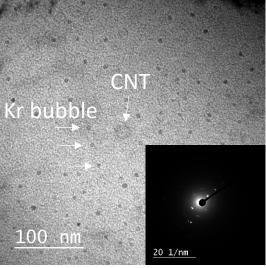
We studied Al+CNT Ni based alloy

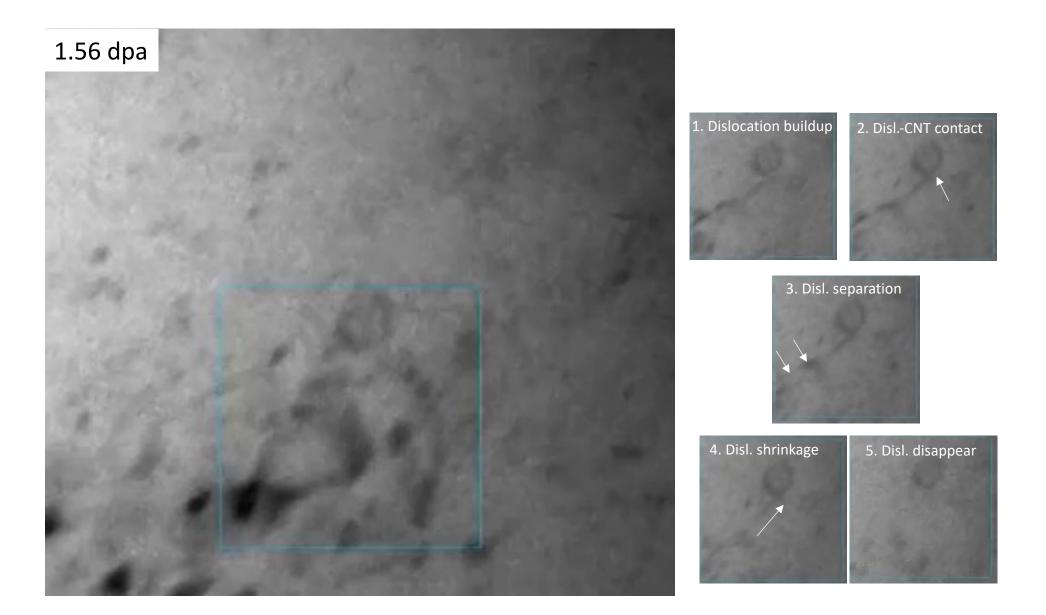

In-situ irradiation of Al+CNT composite in IVEM

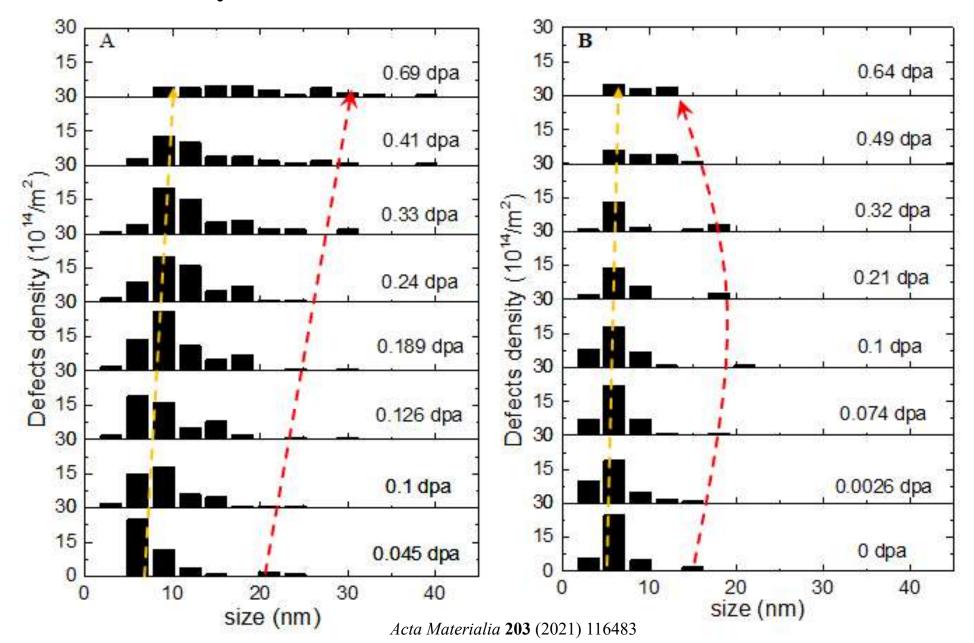


2 vol% CNT in Al




CNT is clearly visible inside Al grain


Before irradiation


After irradiation

In-situ observation of CNT-dislocation interaction during irradiation

Away from CNT

Near CNT

Technical Progress/Accomplishments

- Summaries of technical progress/accomplishments for FY-19
 - Setting up the Composites Lab at MIT for sample processing and testing
 - Synthesis of specific samples
 - Establishment of protocols for safety
 - Characterization of the preliminary physical properties for test reactor: Concentration,

Thermal conductivity, Specific heat, Melting point, Density, Thermal expansion.

List of the nanocomposites for neutron irradiation test

#	Materials	DPA	Temperature (°C)	Number of dog-bone samples	Number of TEM discs		
1	Aluminum	0, 0.7, 1.4, 2.1	300	16	4		
2	Aluminum + 1D	0, 0.7, 1.4, 2.1	300	16	4		
	CNT/nanowires						
3	Zirconium	0, 0.7, 1.4, 2.1	300	16	4		
4	Zirconium + 1D	0, 0.7, 1.4, 2.1	300	16	4		
	CNT/nanowires						
5	Copper	0, 0.7, 1.4, 2.1	300	16	4		
6	Copper +2D Graphene	0, 0.7, 1.4, 2.1	300	16	4		
7	Al4SiC4	0, 0.7, 1.4, 2.1	300	16	4		
8	Steel 1	0, 0.7, 1.4, 2.1	300	16	4		
9	Steel 2	0, 0.7, 1.4, 2.1	300	16	4		
10	Steel 1 + oxides/carbides	0, 0.7, 1.4, 2.1	300	16	4		
11	Steel 2 +	0, 0.7, 1.4, 2.1	300	16	4		
	oxides/carbides						
12	Nickel	0, 0.7, 1.4, 2.1	300	16	4		
13	Nickel + 1D	0, 0.7, 1.4, 2.1	300	16	4		
	CNT/nanowires						
Total number of test samples							

Physical Properties of materials for irradiation vehicles

Materials	Concentration	Thermal conductivity (W/m·K)	Specific heat(J/g·K)	Melting point (°C)	Density (g/cm ³)	Thermal expansion (um/m·K)
Aluminum	1 vol% CNT(0.5 wt%)	193 (LFA)	~0.9	660	2.7	<23.1
Zirconium	~2vol %(4.4wt%) CNT	9.892 (LFA)	~0.27	1855	6.5	<5.7
Copper +2D Graphene	~1vol% graphene	<401	~0.385	1084	8.96	<16.5
Al4SiC4		80		>2700	3.03	6.2
<u>Steel 1</u> + oxides/carbides	~ 2 wt% Y ₂ Ti ₂ O ₇	~24.9	~0.46	1510	7.78	~9.9
<u>Steel 2</u> + oxides/carbides	$\sim 2wt\% Y_2Ti_2O_7$	~15	~0.5	1673	7.9	~17
Nickel + 1D CNT/nanowires	~1 vol% CNT	<90.9	~0.44	1455	8.9	<13.4

AMM TECHNICAL REVIEW MEETING (FY-20) DEC 2 – 3, 2020

• No.3 (Zr) and No.4 (Zr/CNT) \rightarrow No.3 (Fe-16Cr-2Si) and No.4 (Fe-20Cr-2Si)

The oxygen concentration of No.3 (Zr) and No.4 (Zr/CNT) was too high (0.9 at%) which resulted in the brittle phase of Zr matrix. Thus, we replaced Zr and Zr/CNT in the test matrix with Fe-16Cr-2Si and Fe-20Cr-2Si

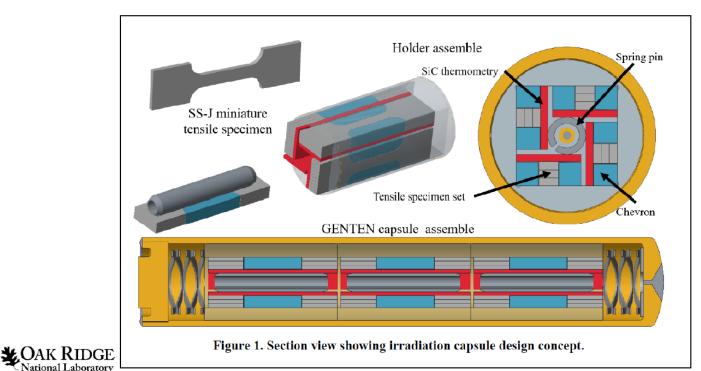
• No.7 (Al4SIC4) \rightarrow No.7 (Single Crystal Ni)

The thermal conductivity of the No.7 (Al4SiC4) at high temperature was not fit to the neutron test vehicle. We have changed to Single-crystal Ni.

Technical Progress/Accomplishments

• List technical progress/accomplishments for FY-20

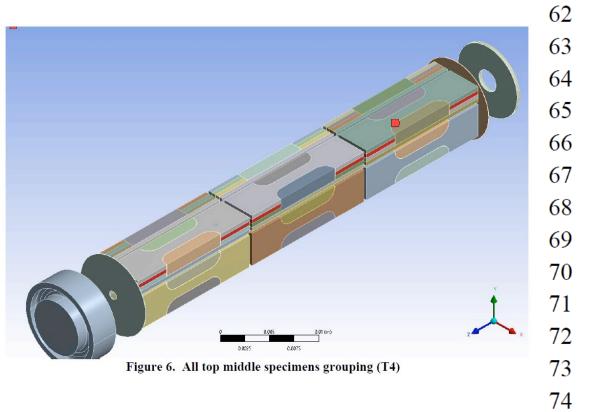
1. Design and Assembly of Rabbit Capsules for Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor (ORNL)


2. Stability of the dispersoids under irradiation and designing new interface to enhance long term radiation performance

- Investigation of selection criteria of dispersoids: wetting, high temperature stability, reactivity

1. Design and Assembly of Rabbit Capsules for Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor (ORNL)

- A HFIR cycle provides between 1.4 1.7 dpa per cycle depending on the material and position
- 2 rabbits per dose at 300°C (+/- 20°C)
 - ~.7 dpa Hydraulic Tube for 13 days (.5 cycle)
 - ~1.4 dpa Standard position for 1 cycle
 - ~2.1 or 2.8 dpa either 1 full cycle plus 13 days in Hydraulic Tube position / or 2 full cycle

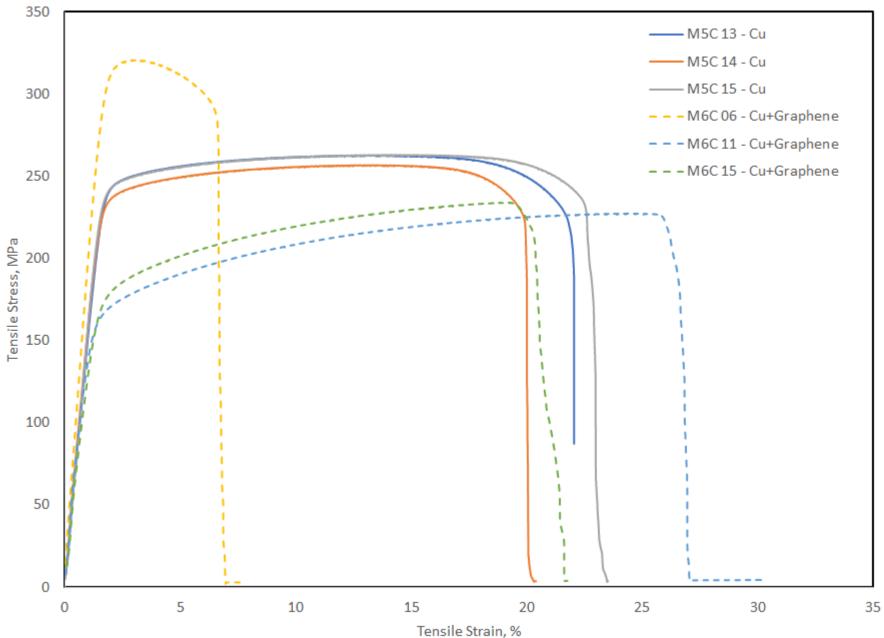


Proposed Test Matrix

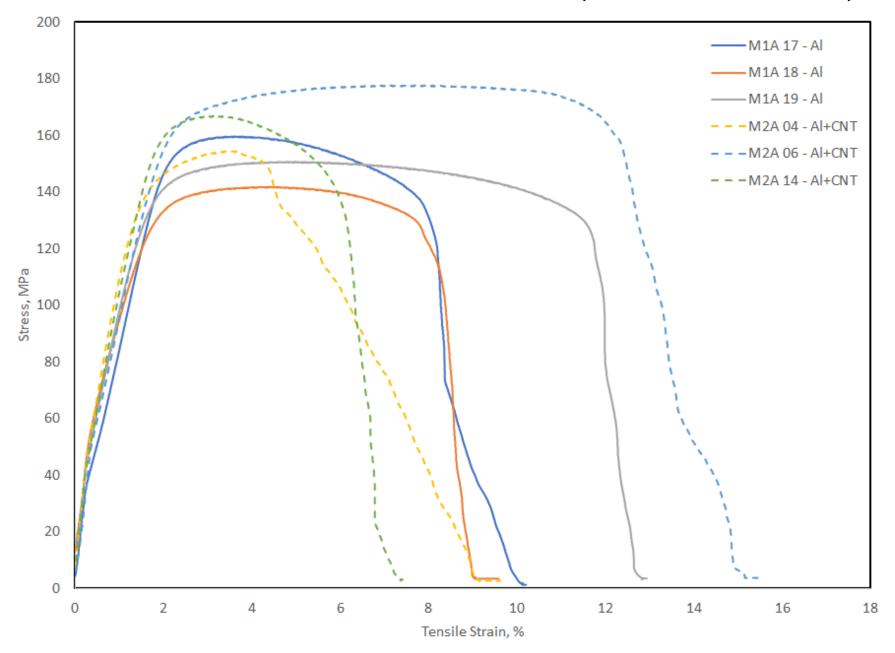
DPA	Rabbit ID	Sub Assembly	SS-J2 Tensile 16x4x.5	MPC1 Coupon (16x4x.25)	
.7 dpa	JULI01	Тор	6	6	
		Mid	6	6	
		Bottom	6	6	
.7 dpa	JULI02	Тор	6	6	
		Mid	9	6	
		Bottom	6	9	
Total 0.7 dp	а		39	39	
1.4 dpa	JULI03	Тор	6	6	
		Mid	6	6	
		Bottom	6	6	
1.4 dpa	JULI04	Тор	6	6	
		Mid	9	6	
		Bottom	6	9	
Total 1.4 dp	а		39	39	
2.1 dpa	JULI05	Тор	6	6	
		Mid	6	6	
		Bottom	6	6	
2.1 dpa	JULI06	Тор	6	6	
		Mid	9	6	
		Bottom	6	9	
Total 2.1 dpa			39	39	
Total			117	117	
			Open slide i	master to edit	

Table 2-5. ANSYS parametric study results—TRRH position 6

ANSYS analysis


Run	Position	OD1	OD2	OD3	T4	T3	T2	T1
		mm	mm	mm	°C	°C	°C	°C
61	6	9.30	9.30	9.30	250	248	258	242
62	6	9.15	9.30	9.30	276	249	268	306
63	6	9.45	9.30	9.30	215	246	241	153
64	6	9.30	9.15	9.30	275	258	311	252
65	6	9.30	9.45	9.30	210	230	173	223
66	6	9.30	9.30	9.15	276	313	268	243
67	6	9.30	9.30	9.45	215	159	242	240
68	6	9.18	9.18	9.18	320	317	328	310
69	6	9.42	9.18	9.18	264	313	299	177
70	6	9.18	9.42	9.18	255	284	201	275
71	6	9.42	9.42	9.18	214	283	190	165
72	6	9.18	9.18	9.42	264	184	298	306
73	6	9.42	9.18	9.42	210	182	269	175
74	6	9.18	9.42	9.42	214	172	190	274
75	6	9.42	9.42	9.42	173	171	179	165

Part layout for capsules



Neutron irradiation completed!!

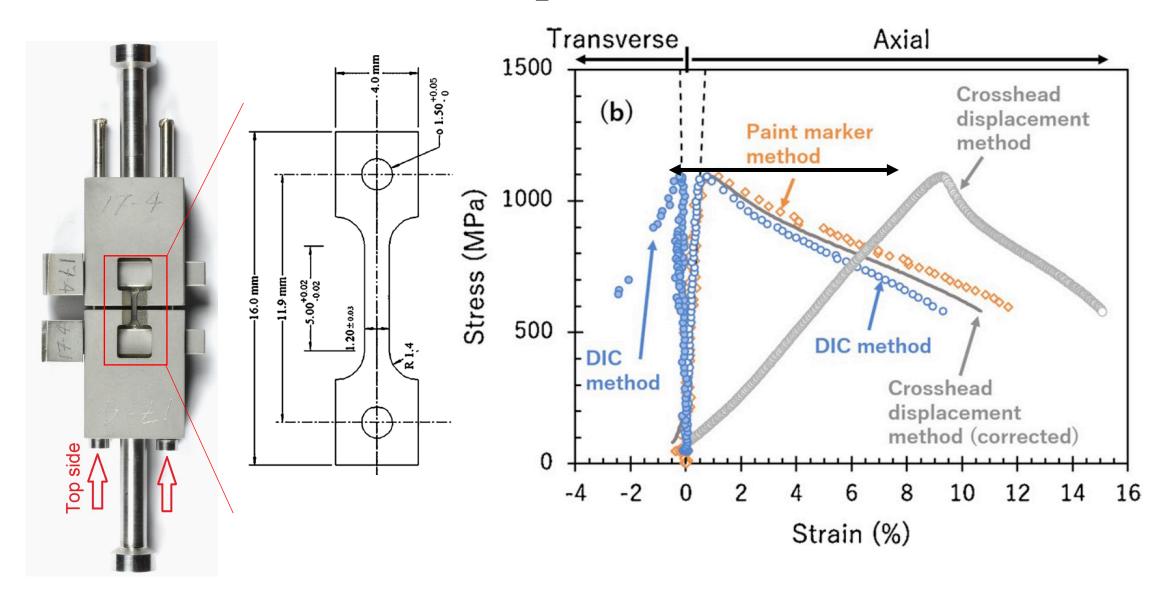
Stress and Stress curve (unirradiated)

Stress and Stress curve (unirradiated)

Fusion Engineering and Design 157 (2020) 111663

Contents lists available at ScienceDirect

Fusion Engineering and Design


journal homepage: www.elsevier.com/locate/fusengdes

Non-contact strain evaluation for miniature tensile specimens of neutronirradiated F82H by digital image correlation

Takashi Nozawa^{a,*}, Hideo Sakasegawa^a, Xiang Chen^b, Taichiro Kato^a, Josina W. Geringer^b, Yutai Katoh^b, Hiroyasu Tanigawa^a

^a National Institutes for Quantum and Radiological Science and Technology, 2-166 Omotedate, Obuchi, Rokkasho, Aomori, 039-3212, Japan ^b Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA

Load-frame machine compliance need to be corrected

2. Selection Criteria of dispersoids

- i) high-temperature stability
- ii) Good wettability
- iii) Reactivity

=> investigated different types of oxides, carbides, nitrides

Reactivity: reaction path ZrC in Ni TiO2 in Ni Ti4(**NI**5O8) 2Ni Til ZiC can create side reaction to $Zr_2Ni_{17} + C$ with Ni TiO₂ doesn't have a side reaction with Ni

Formation energy and possible other reaction in Ni.

Data is obtained from the materials projects (<u>https://materialsproject.org/</u>).

NT/NW	Formation/decomposition (eV)	Possible reaction in Ni	Melting temperature(°C)
A12O3	-3.442	None	2,072
BN	-1.472	None	2,973
Cr3C2	-0.11	None	1,895
ZrN	-1.87	None	2,952
TiO2	-3.523	None	1,843
AlN	-1.595	None	2,500
Y2O3	-3.99	None	2,425
SiC	-0.205	SiNi13, Si12Ni31, SiNi2, SiNi	2,830
ZrC	-0.808	Zr2Ni7	3,420
TiC	-0.808	TiNi3	3,067
Ti2CN	-1.392	Complex	
WC	-0.122	Ni4W	2,870
HfC	-0.943	HfNi3	3,928
Mo2C	-0.103	Ni3Mo, Ni2Mo	2,520
V2C	-0.475	VNi2, VNi3, V6C5	>2,810
Nb2C	-0.46	NbNi3	3,608

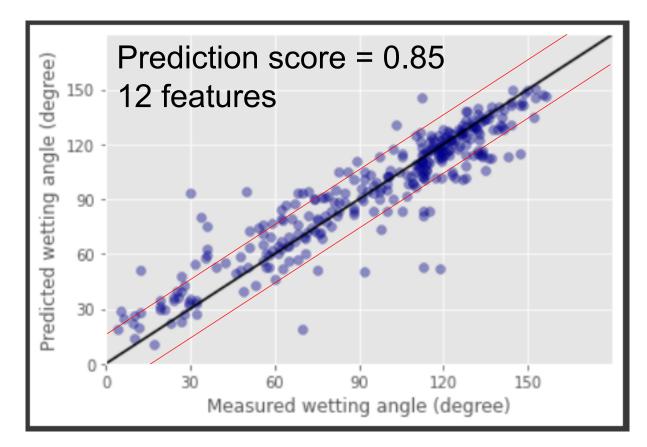
Modeling and Machine Learning prediction

• Preparation of Data: Experimental data from literature (~2300 data points)

523 Au Image: Sector	Reference
524 Sn Image: Sn Ima	N. Frage, Acta N
525 Au Cu 24.3 Image: Comparison of the compari	N. Frage, Acta N
526 Au Cu 42.4 Image: Au Ti 1 Image: Au C 1.00 Image: Au 119 1150 Vacuum 1E-3Pa Image: Au Image: Au Image: Au Image: Au Image: Au Ti 1 Image: Au C 1.00 Image: Au Image: Au <td>N. Frage, Acta N</td>	N. Frage, Acta N
527 Au Cu 61 Image: Comparison of the compariso	N. Frage, Acta N
528 Au Cu 77.3 Au Ti 1 A Cu C 1.00 C 1.00 A Ti 1 A C A C 1.00 A Ti 1.00 A C 1.00 A Ti	N. Frage, Acta N
	N. Frage, Acta N
529 Au Cu 92 5 Ti 1 C 100 92 1150 Vacuum 1E-3Pa	N. Frage, Acta N
	N. Frage, Acta N
530 Cu and the constraint of t	N. Frage, Acta N
531 Au Ni 7.5 U Ti 1 U C 1.00 C 1.00 Vacuum 1E-3Pa	N. Frage, Acta N
532 Au Ni 15.4 U Ni 15.4 O Ti 1 U V C 1.00 O C 0.00 O C 0	N. Frage, Acta N
533 Au Fe 4.1 A Ti 1 C C 1.00 A Ti 10 A Ti 10 A Ti 10 A Ti 10 A Ti 1.00 A TI	N. Frage, Acta N
534 Au Fe 7.5 Au Ti 1 C C 1.00 63 1150 Vacuum 1E-3Pa	N. Frage, Acta N
535 Ag Ti 0.98 Ti 0.98 Ti 1 1 C 1.00 C 1.00 A 100 A 1050 Vacuum 1E-3Pa	N. Frage, Acta N
536 Ag Ti 1.27 a Ti 1.27 b Ti 1 a a C 1.00 C 1.00 b Ti 1.00 A TI 1	N. Frage, Acta N
537 Ag Ti 2.69 Ti 2.69 Ti 1 1 1 C 1 C 1.00 C 1.00 C 1.00 C 54 1050 Vacuum 1E-3Pa	N. Frage, Acta N

Featurization

• Generate features using Matminer


Compound properties (average, range, std, max, min)

Atomic Number	Mendeleev		Atomic Weight	Melting		Column	
	Number ⁹			Te	mperature		
Row Covalent		idius	Electronegativity*	# s Valence		# p Valence	
				E	lectrons	Electrons	
# d Valence	# d Valence # f Valence		Total # Valance	#	Unfilled s	# Unfilled p	
Electrons Electrons		S	Electrons	States [†]		States [†]	
# Unfilled d # Unfilled		l f	Total # Unfilled	Spe	cific Volume	Band Gap Energy	
States† States			States†	of	0 K Ground	of 0 K Ground	
					State‡	State‡	
Magnetic Moment (per atom) Spa		ace Group Number of 0 K					
of 0 K ground state‡			Ground State‡				

L. Ward et al., npj Computational Materials 2 (2016) 16028.

Training and Testing of the Wetting Angle Model

- Divided the collected experimental data into subsets
- Took a subset with ~1000 data points of metal-oxide/fluoride wettability
- Used 70% of this subset for the training of the model

Search for Candidate Materials

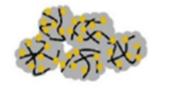
	Metal	Substrate		Metal	Substrate			Metal	Substrate	Temp	theta_pred
0	AI	Ac2O3		necui	Substruct		0	AI	Ac2O3	933.47	128.954733
1	AI	Ag1Al1F3	0	Al	Ac2O3	93	1	AI	Ag1Al1F3	933.47	133.420695
2	AI	Ag1Al1F3	1	AI	Ag1Al1F3	93	2	AI	Ag1Al1F3	933.47	128.954733
3	AI	Ag4Al4O8	2	AI	Ag1Al1F3	93	3	AI	Ag4Al4O8	933.47	128.954733
4	AI	Ag1Al1O3	3	AI	Ag4Al4O8	93	4	AI	Ag1Al1O3	933.47	133.420695
			4	AI	Ag1Al1O3	93	••••				
28699	AI	O8Zr4					28699	AI	O8Zr4	1933.47	135.089938
28700	AI	O4Zr2	 28699	AI	 O8Zr4	193	28700	AI	O4Zr2	1933.47	135.089938
28701	AI	O4Zr2	28700	AI	O4Zr2	193	28701	AI	O4Zr2	1933.47	117.249954
28702	AI	O8Zr4	28701	AI	O4Zr2	193	28702	AI	O8Zr4	1933.47	131.061663
28703	AI	O8Zr4	28702 28703	AI AI	O8Zr4 O8Zr4	193 193	28703	AI	O8Zr4	1933.47	131.061663
28704 ro	ows × 2 c	olumns			08214 9 columns	193	631488 ı	rows × 6	columns		

List of pairs Fea

Featurization

Experimental validation

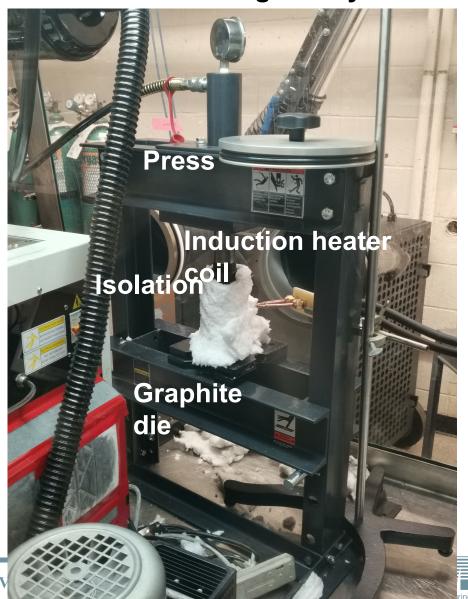
Fabrication of Ni-Titanium oxide nanowire composite



Raw pure Ni powders (50 µm)

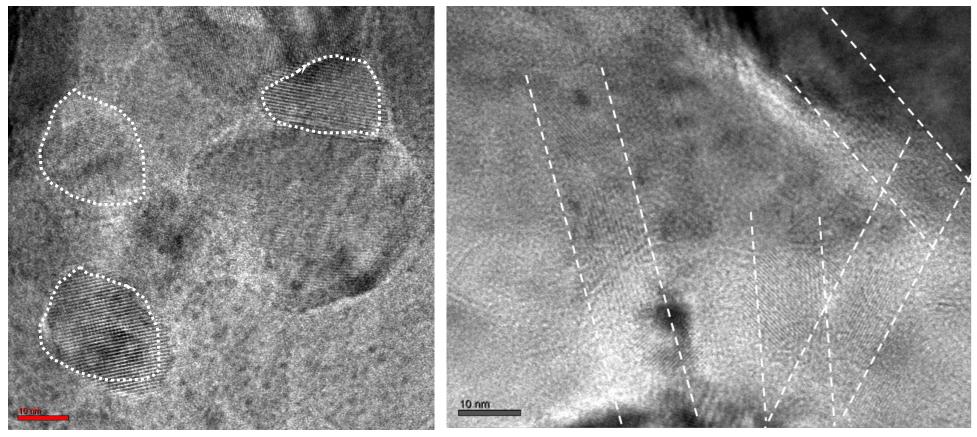
TiO2 nanowires (industrial grade, $\Phi < 10$ nm, length ~ 100 nm)

High energy ball milling (600 rpm, 30 mins in total)



Powder mixtures

Sintering (Hot press: 85 MPa 45 mins, 1100 C)


Sintering facility

Φ 20 mm, ~10 gram

AMM TECHNICAL REV

TiO₂ nanowires dispersed in Ni matrix

Cross-sectional view of TiO2 nanowire

longitudinal sectional view of TiO2 nanowire

Project Impacts

• 7 Journal Publications to date

[1] Nanotube/nanowire as effective defect sinks in metals: atomistic simulations and in situ ion radiation transmission electron microscopy, *Acta Materialia* **203** (2021) 116483

[2] Additive manufacturing for energy: A review, Applied Energy 282 (2021) 116041

[3] Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics, *Acta Materialia* **197** (2020) 212

[4] Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel, *Nature Communications* **11** (2020) 3103

- Conference Papers: nothing to report
- Conference Presentations:

Kang Pyo So, P. Cao, Y. Yang, J. G. Park, M. Li, Y. Long, J. Hu, M. Kirk, M. Li, E. M. Bringa, Y. H. Lee, M. P. Short, J. Li "Nanotube/nanowire as effective defect sinks in metals: atomistic simulations and in situ ion radiation transmission electron microscopy," TMS (2019), MiNES (2019), MITAB (2020) -> invited in journal *Applied Energy*

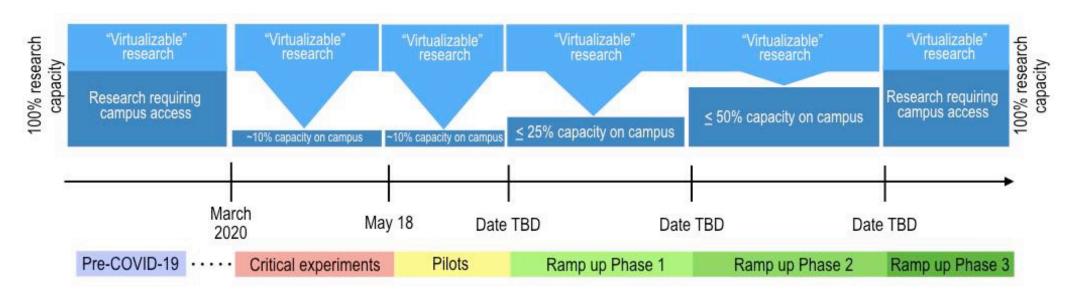
- Patents: nothing to report
- Involvement: nothing to report

Milestones

Schedule:

	Yr1 – first half	Yr1 – second half	Yr2 – first half	Yr2 - second half	Yr3 – first half	Yr3- second half
Sample preparation and neutron radiation planning						
Neutron radiation in ATR						
TEM in IMCL						
APT in CAES						
Mechanical testing in IMCL						

AMM TECHNICAL REVIEW MEETING (FY-20) DEC 2 – 3, 2020


Milestones and Deliverables for FY-20

Deliverables	Status	Start Date	Finish Date	Revised Finish Date	Actual Finish Date
Synthesis and preliminary characterization of 13 types of samples	Completed Late	10/1/2018	9/30/2019	12/30/2019	3/31/2020
Provided Four quarterly reports	Completed	01/01/2020	10/30/2020		
Published two papers	Completed	01/01/2020	11/27/2020		

Issues and Concerns

• MIT create a protocol for rapid response to the COVID-19 crisis. The MIT administration established policies to significantly scale back research activities on campus.

Response to this project: we have been continuing our research activities through remote meetings, literature surveys, data analysis, modeling, theoretical approach, and limited lab activities during COVID periods.

Milestones and Deliverables for FY-21

• Deliverables:

Technical reports	Date
Final Technical Report on Nanodispersion Strengthened Metallic	12/29/2021
Composites with Enhanced Neutron Irradiation Tolerance	12/29/2021
Revealing of the mechanical and thermal properties	9/30/2021
Radiation properties and mechanism characterization	9/30/2021
Characterization of the microstructure: dispersion of 1D and 2D reinforcement	9/30/2021
Optimization of the composite structure: grain and interface	9/30/2021

Possible Areas/Industries/Programs (and Readiness) for Adoption

• Include estimated Technology Readiness Level (TRL)

We have been working on the market discovery and commercialization for this technology (TRL 4 to 5) to transfer to the industry. The 3D printing market could be the lowest hanging fruit and most impactful industrial areas.

Special thanks to our Oak Ridge National Lab collaborators

Kory Linton Annabelle Le Coq Xiang Chen Ben Garrison

Idaho National Lab collaborators

Cheng Sun Mitch K. Meyer

Contact Information and Questions

- PI: Ju Li, <u>liju@mit.edu</u>
- Technical lead: Kang Pyo So, <u>kangpyo@mit.edu</u>

AMM TECHNICAL REVIEW MEETING (FY-20) DEC 2 – 3, 2020