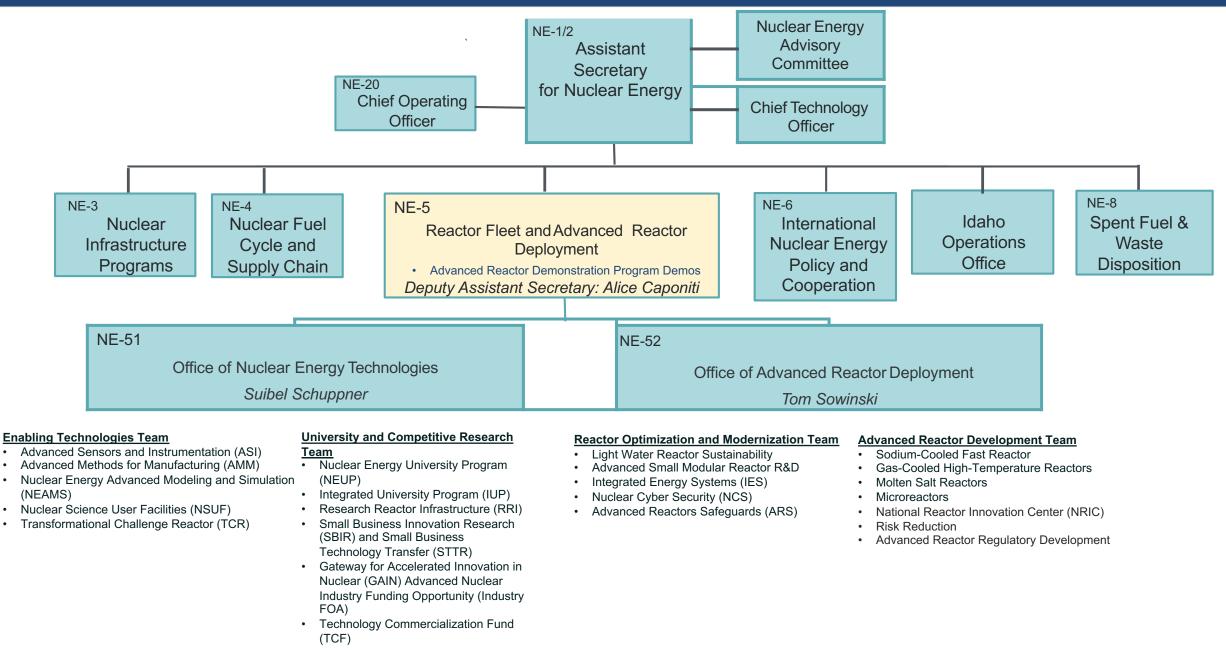


Advance Methods for Manufacture Program


Annual Review Technical Review December 2-3, 2020 **Dirk Cairns-Gallimore** DOE-NEET-AMM Federal Program Manager

Office of Nuclear Energy: Mission Pillars

- Advance nuclear power to meet the nation's energy, environmental, and national security needs.
- Resolve technical, cost, safety, security and regulatory issues through research, development and demonstration.

Office of Nuclear Energy

Office of Reactor Fleet and Advanced Reactor Deployment Mission (NE-5)

- **Vision** Be a catalyst for the commercialization of NE-sponsored research, development and demonstration products
- Mission Integrate NE's research investments to achieve a productive and balanced portfolio of competitive and crosscutting research, development, and demonstration (RD&D) and research infrastructure to enable expansion of the U.S. commercial nuclear industry

Objectives

- Full and effective integration of NE RD&D planning, execution and oversight
- Systematic management of NE investments in research capabilities
- Alignment of NE's RD&D programs with industry-identified technical and regulatory needs
- Accelerate the introduction of innovative technologies into the marketplace through multiple mechanisms

U.S. Advanced Reactor Landscape: Advanced Reactor Demonstration Program

DOE Advanced Reactor Demonstration Program •

- \$230 million initial year funding to establish a program to demonstrate multiple advanced reactor designs at various stages of technological maturity
- Construction of **two demonstration reactors** within five to seven years _
 - Terrapower, LLC Natrium Reactor Sodium-Cooled Fast Reactor
 - X-energy High-temperature Gas Cooled Reactor
- Additional risk risk reduction awards to be announced

Advantages ٠

- Focus DOE and non-federal resources on the construction of real demonstration reactors and supporting activities for commercial use
- Congress funded DOE to establish a program to demonstrate multiple advanced reactor designs —
- Technology agnostic all advanced technologies are eligible, including LWR-based designs
- Construct and demonstrate several advanced reactors with beneficial capabilities, such as:
 - Inherent safety features
- Superior reliability

- Lower waste yields Proliferation resistance
- Greater fuel utilization
- Improved thermal efficiency
- Ability to integrate electric & non-electric applications

Congressional support for Reactor Deployment

Companies and Research Institutions Developing Advanced Nuclear Technology Across the Country

Advanced Nuclear Industry: Next Generation - A Recent Survey by Third Way

Over 60 companies and research institutions are working on advanced nuclear projects for a wide array of capabilities to meet the energy needs of the future

Significant levels of private sector investment

+ third way

Reactor Design Types

Liquid Metal-cooled Fast React

High Temperature Gas Reacto

Designs Advanced Nuclear Fuel

Molten Salt Reactor
Fluoride Salt-cooled High
Temperature Reactor

Debble Rad Reactor

Nuclear Battery Reacto

Small Modular Reactor

Accelerator Driven System

Fusion Reactor
Super-Critical CO. Reactor

Southern California

Atlantic

DOE Next Gen

Hyper'

CIT Tri Alpha

EM2 and MHR

Lightbridge

MIFTI

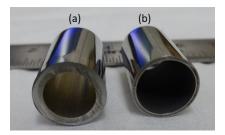
I PP

ockheed Martin

SC PPPL

SC-HTGE

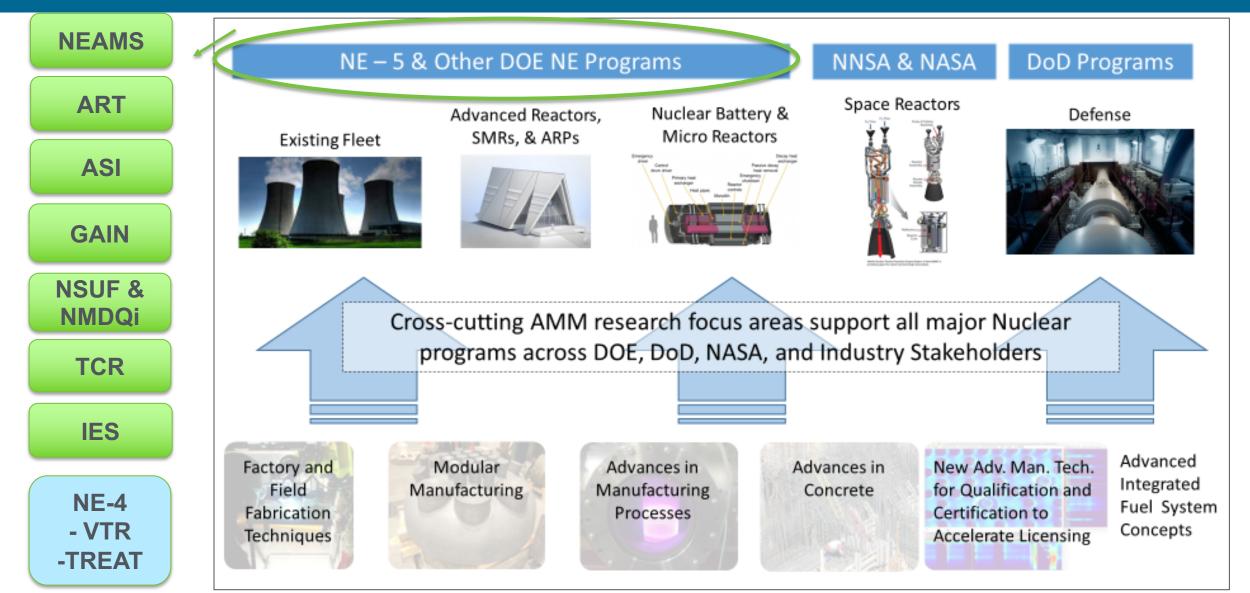
Advanced Methods for Manufacturing (AMM)


Vision

 To improve and demonstrate the methods by which nuclear equipment, components, and plants are manufactured, fabricated, and assembled by utilizing 'state of the art' methods

Goal

- To reduce cost and schedule for new nuclear plant construction
- To make fabrication of nuclear power plant (NPP) components faster, less expensive, and more reliable


GEH BWR fuel bundle w/debris filter insert

Fuel tubes produced by cold spray

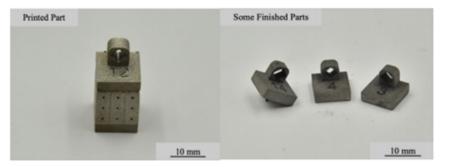
Connections of AMM program to other R&D programs, NRC, Industry

High Impact Materials & Manufacturing Technology Challenges

• Design approaches for manufacturing

- More qualified materials are needed by reactor developers to allow for design flexibility and to meet performance targets.
- Optimized process modeling and AI
- Interface design
- Residual stresses relationships to design features
- Topology optimization
- Develop and qualify high strength, corrosion and radiation resistant materials for molten salt reactors
- Accelerate qualification (new paradigm?)
 - Verification of quality & validation of modeling tools: specific manufacturing process modeling
 - "New" material discovery (or is it adoption of lessons learned from other disciplines)
 - High-throughput testing and characterization
 - Verification of quality & validation of modeling tools: specific manufacturing process modeling
 - Acceptance protocols for high temperature reactor components fabricated by advanced manufacturing methods
 - Integrated shared databases
- Compact Heat Exchangers
 - Develop scientific understanding of processing-properties relation for enhanced diffusion bond properties
- Large component fabrication and welding, Size limitations (Scalability size, volume)
- Sensors:
 - Radiation tolerant sensors
 - Miniaturization of sensors
 - Integrated manufacturing processes
- Thermal barrier coatings: Interface designs to prevent scaling, functional materials, isolation

Addressing Challenges


- Competitively selected projects via Consolidated Innovative Nuclear Research (CINR) & Industry FOA
 - Open to universities, national laboratories and Industry
 - R&D and irradiation/PIE projects funded
 - FY 21 workscopes
 - MODULAR ADVANCED MANUFACTURING APPROACHES
 - NEW ADVANCED MANUFACTURING TECHNOLOGIES FOR QUALIFICATION AND CERTIFICATION TO ACCELERATE LICENSING
 - IRRADIATION TESTING OF MATERIALS PRODUCED BY INNOVATIVE MANUFACTURING TECHNIQUES
 - AMM Qualification Workshop
 - GAIN-EPRI-NEI
 - Develop an integrated approach to the AMM qualification process for materials and components

Contact Information

Dirk Cairns-Gallimore: AMM DOE federal program manager dirk.cairns-gallimore@nuclear.energy.gov

Dr. Isabella van Rooyen: AMM program National Technical Director Isabella.vanrooyen@inl.gov

Dissolvable support structures (University of Pittsburg)

SMR Reactor Pressure Vessel (EPRI) One-half lower head: Forge and electron bean weld

