Small Modular Reactor
Pressure Vessel Manufacturing & Fabrication Technology Development

Project Update

David Gandy
Sr. Technical Executive
davgandy@epri.com

M. Albert,
Sr. Technical Leader
MAlbert@epri.com

AMM Technical Review Meeting Webinar
December 2&3, 2020
Outline

- Objectives
- Project Status Overview
 - Powder Metallurgy-HIP Progress
 - EB Welding Progress
 - Diode Laser Welding Progress
 - Heat Treatment Parameter Development
- Next Steps—Phase I
- Phase II Tasks
- Summary
Objectives – SMR Advanced Manufacturing Project

- Rapidly accelerate the deployment of SMRs
- Develop/Demonstrate new methods for manufacture / fabrication of a RPV in < 12 months
- Eliminate 40% from the cost of an SMR RPV, while significantly reducing the schedule
- Primary Advanced Methods:
 - PM-HIP
 - Electron Beam Welding
 - Diode Laser Cladding
Status – SMR Advanced Manufacturing Project

- **EB Weld Development**
 - Weld parameters for A508 steel --complete
 - Head halves EB weld mockup --completed
 - Lower flange-to-shell mockup --completed

- **Diode Laser Cladding**
 - Parameter optimization and cladding heads selected
 - Bottom Head cladding mockup --complete

- **Bottom Head**
 - Four one-half lower heads fabricated from PM-HIP --complete.
 - Bottom head weld prep machining, fixturing, and welding --complete

- **Transition Shell**
 - Four sections of transition shell manufactured; Articles 5 and 6 in Q4 2020
 - Assembly scheduled for early in 2021.

- **Flanges, Lower and PZR shells** have been forged and delivered

Year 2 Progress Report: 3002019335 (April 2020)
Powder Metallurgy-HIP Progress

Chemistry and Charpy Toughness – A508

- Produced ~20 heats so far (meets SA508 chemistry requirements)
 - Air melt and VIM atomization used
- Toughness properties—Varies widely from 62-130ft-lbs
- Tensile properties—Yield and tensile easily met
- VIM atomized heats (4) consistently above 110ft-lbs (as-received powder)
- Air melt atomization heats in 80-95 ft-lbs generally (as-received powder)
- Focus on reducing:
 - Targets: oxygen (<100ppm) and silicon (0.05-0.20 wt%)
Powder Metallurgy-HIP Progress

Vacuum Annealing– A508

- Vacuum annealing of powder produces pristine powder condition
 - Removes oxygen from powder
 - 7 heats above 110ft-lbs
 - Next slide
Comparison of 700C and 800C Vacuum Annealing Across Three A508 Heats

6 x 6 x 6 blocks were SQNT -- Tempered for 10 hours.

Four hours at 700C vacuum anneal does not appear sufficiently long enough to removal residual gases to generate good toughness properties; however, 800C does.

A508 PM-HIP Toughness (ft-lbs) following Vacuum Annealing for 4 hours

<table>
<thead>
<tr>
<th></th>
<th>700C</th>
<th></th>
<th></th>
<th>800C</th>
</tr>
</thead>
<tbody>
<tr>
<td>818651</td>
<td>86.6</td>
<td>818880</td>
<td>84.3</td>
<td>819188</td>
</tr>
<tr>
<td>818651</td>
<td>113.2</td>
<td>818880</td>
<td>114.2</td>
<td>819188</td>
</tr>
</tbody>
</table>
One-Half Lower Head Capsule in Frame for HIP’ing

70-inches in diameter, ~6300lbs each
Capsule & Frame are inserted into HIP; Lower Head after HIP
Lower Head After HIP
Transition Shells Ready For Vacuum Annealing, then HIP
Two Transition Shells--Vacuum Degassing
Completed Transition Shell

4620 lbs. each, ~6ft tall
Electron Beam Welding Progress
EB Welding—Shell-to-Flange

Lower Flange Shell Mockup EB Weld -- ~6 ft (1.82m) diameter (Note, mockup is upside down)

Completed in 47 minutes

Lower head to Lower Flange Shell (again, upside down)
Each One-half Lower Reactor Head ~6500lbs (2950 kg) x 70 inches @ 2/3rds scale
Articles 2 and 3 – EB Welding Complete
Lower Head Halves – Weld Prep for EBW
Articles 2 and 3 – EB Welding
- 23 minutes total welding time
EB Welding Results To Date

- Significantly reduced weld times
 - <90 minutes for full size girth weld projected

- Elimination of weld keyhole at end of RPV diameter
 - Demonstrated technology via multiple large diameter, thick section welds
 - Should be able to share with industry by end of year.
Diode Laser Cladding Development
Diode Laser Cladding Progress

Lower_Upper_Spiral_1 start position

Lug_Face start position

Lug_Top start position

Lower_Upper_Spiral_1 end position

Lug_Face end position

Lug_Top end position
Programming verification for 30mm lower head assembly

Total process statistics for single layer:
- Total laser time: 19hrs
- Total process time: 24hrs
- Total powder usage: 92kg (202lbs)

Program order:
- Lug_Face
- Lug_Top
- Dome_Center
- Dome_Fill
- Dome_Edge
- Dome_Upper_Spiral
- Dome_Lower_Spiral (1, 2 & 3)

30mm lower head assembly – all programs tested and surfaces re-melted.
Heat Treatment Parameter Development
Heat Treatment Parameter Development

- Laboratory work suggested that evidence of weld could be removed via SQNT while providing good fracture properties.
- Can we scale this up to large components without significant distortion?
 - What is the lowest normalization temperature that removes evidence of weldment?
- Working with SFEL to scale HT technology via: 1) modeling, 2) laboratory work, and 3) mockups
- EB Weld Coupon Size: 450 x 290 x 90 mm
Heat Treatment Development-SQNT

- Homogenize & Quench (Soln anneal) – temperatures to right
- Hardening (normalizing) – 870°C±10°C
- Tempering – 640°C±5°C

<table>
<thead>
<tr>
<th>HT Temp (°C)</th>
<th>Energy (J), Weld</th>
<th>Energy (J), HAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>875</td>
<td>266</td>
<td>224</td>
</tr>
<tr>
<td>900</td>
<td>263</td>
<td>234</td>
</tr>
<tr>
<td>925</td>
<td>262</td>
<td>216</td>
</tr>
<tr>
<td>950</td>
<td>258</td>
<td>185</td>
</tr>
<tr>
<td>975</td>
<td>255</td>
<td>154</td>
</tr>
</tbody>
</table>

Charpy Test Results
Heat Treatment Development-SQNT

Laboratory results are encouraging – 875C
• Good toughness
• Homogenized microstructure
Linear analysis
Self-Buckling

- Material of shell is SA-508-3 at 875°C
- The shell is horizontally supported
- The floor and support are considered to be very stiff
- Frictional contact is considered for the touching surfaces
Linear analysis, mode shapes

No buckling concern due to high load multipliers!

Mode 1
Load multiplier: 511

Mode 2
Load multiplier: 6400
Heat Treatment Parameter Development -- Progress

- SQNT success in laboratory on thick EB Welds
- Also, modeling looks good (no buckling and low stresses)
- Next, scale up to 2/3-scale mockup
 - Lower head, lower RPV, lower flange
- Develop EB Welds for ORNL characterization to support Code Case
 - Forged and PM-HIP
Next Steps – SMR Advanced Manufacturing Project

- Bottom Head-to-RPV shell forging via EB weld
- Quality HT of assembly
- Completes lower half (below parting line) of Lower Assembly
- Next, transition shell welding
Summary (1)

- PM-HIP
 - VIM atomization required.
 - Vacuum annealing provides good properties too.
 - Still need to demonstrate properties on large components.

- EB Welding
 - Parameters developed
 - Lower head assembled; mockup of shell-to-flange completed
 - Next assembly & HT of lower half of lower assembly
 - Elimination of keyhole and repair contingency
Summary (2)

- **Diode Laser Cladding**
 - Equipment and parameter development complete.
 - Lower head demonstration completed (touching all surfaces).

- **Heat Treatment Parameter Development**
 - 875C will homogenize microstructure and provide good toughness
 - Need to scale up on mockup

- **Phase II – Upper Assembly**
 - Initiate soon.
Together…Shaping the Future of Electricity