

Transforming Solid State Lighting with Additive Manufacturing

Additively Manufactured Luminaire: R&D Challenges and Technology Gaps

John Trublowski – Eaton Corporation (Award: DE-EE0008722)

DOE Lighting Workshop, Feb. 1-4, 2021

Luminaire Assemblies: Where do we want to be?

Integrated Roadway Concept

Eaton Concept Prototype (2017)*

- Fully printed, integrated circuitry with LED, driver, sensors and antennas
- Minimal part count
- Simplified assembly

Integrated Manufacturing Flow

Fully Integrated Manufacturing Approach

- "Print on demand" model
- · Few components and assemblies
- Integrated mechanical/electronics

• Reduced operations and mfg. footprint

Ship

- Consolidated supply chain
- "Near" zero inventory
- · Faster time to market

* Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires, Final Report, DoE/SSL Funded Project, Contract Number: DE-EE0006260, 2016

Why Additive Manufacturing?: Cost benefits

Key Cost Benefits

- Reduced Design Cycle Time
 - Full digital design
 - CAD to Print Processing
- Tooling Reduction or Elimination
 - Timing for design updates (days vs. months)
 - Tooling storage eliminated (stored in CAD)
- Component Integration
 - Direct printing of electronics (LED circuit, sensors, antennas)
 - Printed fasteners
 - Potential to print heat sinks and reflectors as a single component
- Local (onshore) manufacturing
 - Small, easily configurable Mfg. footprint

LED Circuit Printed on Thermally Conductive Polymer Heat Sink

Why Additive Manufacturing?: Design Flexibility

Key Design Benefits

- Unique solutions for thermal, mechanical, optical
 - Exploit and optimize designs without constraints of traditional manufacturing approaches
 - Easy to implement features which are impossible to build using traditional methods (i.e. hollow structures for reducing weight and material)
- Rapid prototypes for concept validation
 - Typically CAD to Print manufacturing
 - Easy to implement design changes
 - Near Net Shape to minimize post processing
- Integrated structures
 - Easy to combine functions (heat sinking, LED circuitry, mechanical) using printed approaches

Bifurcated ("Y" shaped) Heat Sink

Constructal "Spoke" Heat Sink

Why Additive Manufacturing?: Business Efficiency

Key Benefits for the Business and Customers

- Significant "Time to Market" reduction
 - "Print on Demand" concept
 - Reduce (or eliminate) tooling design and fabrication
- Supply chain consolidation
 - Fewer suppliers
 - Higher quality control on materials
- Reduction in SKU complexity
 - Designs built to order
 - Minimize (or eliminate) inventory
- Custom solutions on a mass production level
 - Easy to implement custom designs
 - Manufacturing is design "agnostic"
 - Lights out manufacturing

Eaton L-PBF printers: EOS M290 and Concept Laser M2 UP1

- 400W laser systems
- 10x10x12" build volumes

Case Study: Luminaire Re-design Timeline (Current Project)

- Problem
 - The initial design concept did not meet the target for Optical Efficacy
- Solution
 - Use simulations to create a new optic design, create new luminaire design around the optical solution
- Design Impact
 - Develop new thermal solution
 - Mechanical design "trade off" optimization study
 - Create new mechanical design

- Create new electronic design
- Fabricate hardware and circuits
- Assemble Luminaire

Where Do We Go From Here?

Looking Forward: Where Can The Technology Improve?

- Cost
- Surface Finish of Printed Structures
- Materials
- System Level Considerations

Cost: Additive Mfg. Equipment/Processes

Main AM Cost Drivers

- Print time
- Size of printing bed (i.e. how many parts can be printed at one time)
- Post process tasks

How can this be addressed?

- Faster AM processes
- Systems with larger beds and multiple lasers/print heads (emerging)
- Better "Net Shapes" (so minimal post processing)

Key Gaps

- 1. High speed Additive Manufacturing processes for metals and polymers
- 2. Processes which can yield AM products closer to Net Shape

Nesting of Printed Heat Sinks

Surface Finish of Printed Materials

Metal Printed Surfaces

- Requires post processing for handling and application of printed electronics
- Process must be high volume, low cost (machining works but can be expensive)

Polymer Printed Surfaces

- Can use methods similar to metal but they are not as effective
- Optical components require some type of polishing to achieve properties similar to injection molding

Key Gaps

- 1. Better surface properties for net shape printing
- 2. Low cost, mass volume polishing methods for optical polymers

Powering Business Worldwide

AM Metal Surface Profile, "As Printed"

AM Metal Surface Profile, Post Processed

Materials for Additive Manufacturing

Structural/Thermal

- Current AM metals seem sufficient for current application
- AM polymer materials with higher thermal conductivity (>8m⁻¹K⁻¹) difficult to find

Printed Electronics

- Existing material sets (dielectrics, conductors) are acceptable for LED circuits
- Curing time for some materials slows down process
- Printable, sensor materials (Temperature, piezo, photo, etc.)

Printed Optics

Reflective:

- Reflectance between 80%-90% (typical)
- Some yellowing in long term UV exposure
- Higher reflectivity materials emerging but being driven by non-lighting applications

Refractive:

- Transmissivity > 93%
- UV degradation an issue

Printed Reflective Optic

Printed Photosensor

Key Gaps

- 1. Printable materials with improved optical properties and UV resistance
- 2. Polymer materials with higher thermal conductivities
- 3. UV and IR curing for electronic materials

System Level Printing (Printed Optics, Print on Heatsink)

Printed Refractive Optics

- SLA Acrylic has minimal scattering and transmissivity >93%
- Scattering at filament interfaces
- Overall transmissivity <80% due to interfacial scattering
- Optical properties very process dependent
- High temperature capability (but Silicones emerging)

Printed Reflective Optics

- Reflectance between 80%-90% (typical)
- Higher reflectivity materials emerging but being driven by non-lighting applications
- High temperature capability (but Silicones emerging)

Printed Electronics on Heat Sink

- Lower LED temperatures with circuit printed directly on heat sink
- Easy to change designs with no tooling change
- Significant elimination/minimization of waste stream over traditional PCB fabrication methods
- Printing on 3D surfaces a potential enabler for improved performance

Interfacial Scattering

Printed LED Circuit on AM Heat Sink

Setup#15

Process Dependency of Printed Optics

Key Gaps

- 1. Processes to minimize scattering
- 2. "Printable" materials with improved UV resistance

Powering Business Worldwide