

Transforming Solid State Lighting with Additive Manufacturing

Additively Manufactured Luminaire: R&D Challenges and Technology Gaps

John Trublowski – Eaton Corporation (Award: DE-EE0008722)

DOE Lighting Workshop, Feb. 1-4, 2021

Luminaire Assemblies: Where do we want to be?

Eaton Concept Prototype (2017)*

- Fully printed, integrated circuitry with LED, driver, sensors and antennas
- Minimal part count
- Simplified assembly

Fully Integrated Manufacturing Approach

- "Print on demand" model
- Few components and assemblies
- Integrated mechanical/electronics

• Reduced operations and mfg. footprint

Ship

- Consolidated supply chain
- "Near" zero inventory
- Faster time to market

*** Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires**, **Final Report,** DoE/SSL Funded Project, **Contract Number: DE-EE0006260, 2016**

Why Additive Manufacturing?: Cost benefits

Key Cost Benefits

- Reduced Design Cycle Time
	- Full digital design
	- CAD to Print Processing
- Tooling Reduction or Elimination
	- Timing for design updates (days vs. months)
	- Tooling storage eliminated (stored in CAD)
- Component Integration
	- Direct printing of electronics (LED circuit, sensors, antennas)
	- Printed fasteners
	- Potential to print heat sinks and reflectors as a single component
- Local (onshore) manufacturing
	- Small, easily configurable Mfg. footprint

LED Circuit Printed on Thermally Conductive Polymer Heat Sink

Why Additive Manufacturing?: Design Flexibility

Key Design Benefits

- Unique solutions for thermal, mechanical, optical
	- Exploit and optimize designs without constraints of traditional manufacturing approaches
	- Easy to implement features which are impossible to build using traditional methods (i.e. hollow structures for reducing weight and material)
- Rapid prototypes for concept validation
	- Typically CAD to Print manufacturing
	- Easy to implement design changes
	- Near Net Shape to minimize post processing
- Integrated structures
	- Easy to combine functions (heat sinking, LED circuitry, mechanical) using printed approaches

Bifurcated ("Y" shaped) Heat Sink

Constructal "Spoke" Heat Sink

Why Additive Manufacturing?: Business Efficiency

Key Benefits for the Business and Customers

- Significant "Time to Market" reduction
	- "Print on Demand" concept
	- Reduce (or eliminate) tooling design and fabrication
- Supply chain consolidation
	- Fewer suppliers
	- Higher quality control on materials
- Reduction in SKU complexity
	- Designs built to order
	- Minimize (or eliminate) inventory
- Custom solutions on a mass production level
	- Easy to implement custom designs
	- Manufacturing is design "agnostic"
	- Lights out manufacturing

Eaton L-PBF printers: EOS M290 and Concept Laser M2 UP1

- 400W laser systems
- 10x10x12" build volumes

Case Study: Luminaire Re-design Timeline (Current Project)

- **Problem**
	- The initial design concept did not meet the target for Optical Efficacy
- **Solution**
	- Use simulations to create a new optic design, create new luminaire design around the optical solution
- **Design Impact**
	- Develop new thermal solution
	- Mechanical design "trade off" optimization study
	- Create new mechanical design
- Create new electronic design
- Fabricate hardware and circuits
- Assemble Luminaire

Where Do We Go From Here?

Looking Forward: Where Can The Technology Improve?

- Cost
- Surface Finish of Printed Structures
- Materials
- System Level Considerations

Cost: Additive Mfg. Equipment/Processes

Main AM Cost Drivers

- Print time
- Size of printing bed (i.e. how many parts can be printed at one time)
- Post process tasks

How can this be addressed?

- Faster AM processes
- Systems with larger beds and multiple lasers/print heads (emerging)
- Better "Net Shapes" (so minimal post processing)

Key Gaps

1. High speed Additive Manufacturing processes for metals and polymers

 \circ \circ

2. Processes which can yield AM products closer to Net Shape

Nesting of Printed Heat Sinks

Top View

Surface Finish of Printed Materials

Metal Printed Surfaces

- Requires post processing for handling and application of printed electronics
- Process must be high volume, low cost (machining works but can be expensive)

Polymer Printed Surfaces

- Can use methods similar to metal but they are not as effective
- Optical components require some type of polishing to achieve properties similar to injection molding

Key Gaps

- 1. Better surface properties for net shape printing
- 2. Low cost, mass volume polishing methods for optical polymers

AM Metal Surface Profile, "As Printed"

AM Metal Surface Profile, Post Processed

Materials for Additive Manufacturing

Structural/Thermal

- Current AM metals seem sufficient for current application
- AM polymer materials with higher thermal conductivity $($ >8m⁻¹K⁻¹ $)$ difficult to find

Printed Electronics

- Existing material sets (dielectrics, conductors) are acceptable for LED circuits
- Curing time for some materials slows down process
- Printable, sensor materials (Temperature, piezo, photo, etc.)

Printed Optics

Reflective:

- Reflectance between 80%-90% (typical)
- Some yellowing in long term UV exposure
- Higher reflectivity materials emerging but being driven by non-lighting applications

Refractive:

- Transmissivity $> 93\%$
- UV degradation an issue

Printed Reflective Optic

Printed Photosensor

Key Gaps

- 1. Printable materials with improved optical properties and UV resistance
- 2. Polymer materials with higher thermal conductivities
- 3. UV and IR curing for electronic materials

System Level Printing (Printed Optics, Print on Heatsink)

Printed Refractive Optics

- SLA Acrylic has minimal scattering and transmissivity >93%
- Scattering at filament interfaces
- Overall transmissivity <80% due to interfacial scattering
- Optical properties very process dependent
- High temperature capability (but Silicones emerging)

Printed Reflective Optics

- Reflectance between 80%-90% (typical)
- Higher reflectivity materials emerging but being driven by non-lighting applications
- High temperature capability (but Silicones emerging)

Printed Electronics on Heat Sink

- Lower LED temperatures with circuit printed directly on heat sink
- Easy to change designs with no tooling change
- Significant elimination/minimization of waste stream over traditional PCB fabrication methods
- Printing on 3D surfaces a potential enabler for improved performance

Interfacial Scattering

Printed LED Circuit on AM Heat Sink

Process Dependency of Printed Optics

Key Gaps

- 1. Processes to minimize scattering
- 2. "Printable" materials with improved UV resistance

Setup# 15

Powering Business Worldwide