Electrophosphorescence for Solid-State Lighting

Mark Thompson

Department of Chemistry, University of Southern California

High Efficiency OLED Options

- Multiple emitters for $RGB \Rightarrow$ white
- ALL excitons need to be utilized
- Ir-based emitters: well proven in mobile displays and television
- Thermally Assisted Delayed Fluorescence (TADF)

Organometallic Ir complexes in OLEDs

- Efficient phosphorescence with τ = 1-3 μ s lifetime
- Optimized OLEDs give external efficiency \Rightarrow Internal efficiency up to 70-100%
- Green, Yellow, Red lifetime are very long, blue is a problem

High Efficiency TADF

- Color (EQE): Green (19.3%), Orange (11.2%), Sky Blue (8%)
 Uoyama, *et. al., NATURE*, 2012, 492
- Orthogonal donor-acceptor give CT excited state with small ΔE_{ST}
- $\tau \sim 5 \mu s$ or higher, no metal to enhance SOC, weak ¹CT oscillator

Phosphors and TADF Emitters good, what's the problem?

- What about device lifetime?
 - Green and Red >30 years at display intensity \bigcirc
 - Blue <2 years at display brightness 🔅
- Device degradation is due to bimolecular annihilation*
 - (a) TTA: $T_1 + T_1 \rightarrow S_0 + S_n(hot)$
 - (b) TPA: $T_1 + H^- \rightarrow S_0 + H^-(hot)$
 - **G/R**: $S_n(hot)$ or $H^-(hot) \Rightarrow$ relax to GS
 - − **B**: $S_n(hot)$ or $H^-(hot) \Rightarrow$ degradation

- OLED displays: Ir-based emitters for Green
 organic fluorescent dopant for Blue
 - nsec lifetime of Blue fluorescence decreases bimolecular decay

* N. Giebink, et al., J. Appl. Phys. 2008, 103, 044509

Best phosphor and TADF Lifetimes ~ 1 μ S

octahedral Rh(bpy)₃ 1000 square-planar Emission decay time $\tau_{av}(300 \text{ K})$ [µs] purely radiative τ_{a}^{r} Ir and Pt based phosphors Ir(dm-2-piq)₂(acac) Ir(ppy)₃ Os(phen)_(dppene) r(4,6-dFppy)₂(acac e(pbt)(CO) seem to flat- line at ~ 1 μ s (H. Yersin, et al., Coord. Chem. *Rev.* **2011**) 10 ³LC \ ³LC/³MLCT ³MLC1 50 100 150 Zero-field splitting $\Delta E(ZFS)$ [cm⁻¹] TADF based emitters hit 1-2 ΔE_{st} (cm⁻¹) 200 400 600 800 1000 1200 1400 0 μs baseline, most are in neat solids not doped films (Organic: Liu, Y., et al. Nature Rev. 10 τ_{TADF} (µs) *Mat.*, **2018**) (Copper: R. Czerwieniec, et al., Coord. Chem. Rev. 2016) Organic 3-, 4-coord. Cu 0.1 25 50 100 150 0 75 125 175 ∠E_{ST} (meV)

2-coordinate CAAC-M-Cz

Science

REPORTS

Cite as: D. Di et al., Science 10.1126/science.aah4345 (2017).

High-performance light-emitting diodes based on carbene-metal-amides

- Clearly both singlet and triplet are utilized
- Are these "normal" phosphors or TADF?
- Very little photophysical characterization

D. Dai, D. Credgington, R. Friend, M. Bochmann, et al., Science, 2017

CAAC-Cu-Cz complexes

Absorption (THF) and emission (PS thin film) spectra

(carbene)Cu(Cz) based OLEDs

S. Shi, et al., JACS, 2019

R. Hamze, et al., Science, 2019

Copper, Silver, Gold Based Phosphors

R. Hamze, *et al.*, *JACS*, **2019**

Where is the best place to look for lower τ_{TADF} ?

- Intersystem crossing here is very fast, τ (ISC) = 20-200 ps
- Ag shows the fastest TADF rate primarily due to small $\Delta E_{S_1-T_1}$
- In the limit of very fast ISC: $\tau_{TADF} = \frac{\tau_{S_1}}{K_{eq}}$; $^{\dagger} K_{eq} \propto \exp(\Delta E_{S_1-T_1}) *$

- Is decreasing $\Delta E_{S_1-T_1}$ further useful?
 - Consider K_{eq} at 300K for Ag^{CAAC}
 - $\Delta E_{ST} = 150 \text{ cm}^{-1} \Rightarrow K_{eq} = 0.16$
 - $\Delta E_{ST} = 50 \text{ cm}^{-1} \Rightarrow K_{eq} = 0.26$ $\tau_{TADF} = 330 \text{ ns}$
 - Decreasing τ_{TADF} further will require a decrease in τ_{S_1}

	τ _{mea} s	$\tau_{\rm rad}$	<u>Full kinetic</u> <u>scheme</u> 200-325K	
	(µs)	(µs)	$\frac{\Delta E_{S_1-T_1}}{(\text{cm}^{-1})}$	$ au_{S_1}$ (ns)
Cu ^{CAAC}	2.8	2.8	590	73
Ag ^{CAAC}	0.50	0.50	150	85
Aucaac	1.1	1.1	570	25
Cu ^{MAC}	1.4	1.6	570	28
Ag ^{MAC}	0.33	0.42	180	46
Au ^{MAC}	0.83	0.98	570	24

† D. Sylvinson M.R., M.E. Thompson, et al., Mat. Horiz., 2020
* P. F. Jones, A. R. Calloway, Chem. Phys. Lett., 1971

What makes (carbene)Cu-Cz complexes work?

Me₂ Φ_{PL} = 11%

Men $\Phi_{PL} = 100\%$ in solution and doped thin film

High efficiency for violet \rightarrow orange emitters Low efficiency if Dipp replaced with phenyl

Are sterically bulky ligands required? What do they do?

- Keep C:→M-N linear
- Prevent rotation about the C-M or M-N bonds
- Prevent the formation of exciplexes and ligand rotation

Origin of high efficiency for two-coordinate complexes

No steric constraints on ligand rotation

- Initial thought was that steric interactions were required to maintain linear structure and high F_{PL}. (WRONG)
- The key is to avoid MLCT excited state and the Renner-Teller distortion it comes with.

T.Y. Li, et al., JACS, 2020

Summary

- WOLED: lots of ways being investigated
 - High efficiency and color quality: harvest ALL excitons
 - Need platforms with long operational lifetime, which requires long lived blue
 - Operational lifetime of blue OLED is enhanced by short radiative lifetime
- Copper, Silver and Gold may compete well with iridium
 - High efficiency, high radiative rate
 - Easily color tunable
 - Very small S_1/T_1 gap
 - OLED lifetime: coming, we need to rethink host and transport materials

Universal Display Corporation

