OLEDWorks

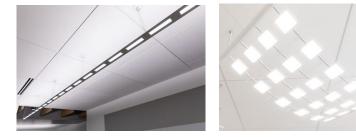
OLED Manufacturing Challenges

Jeff Spindler

2021 DOE Lighting R&D Workshop

OLEDWorks Leading the OLED Lighting Revolution

Industry Leader

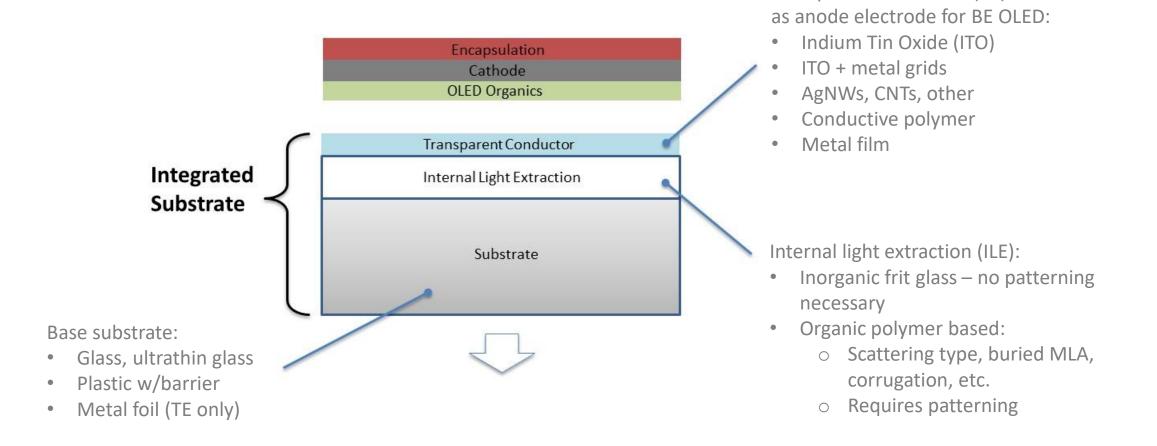

- Team Combination of world leading OLED experts from Kodak and Philips, founded in 2010
- Technology Over 180 patents, critical trade secrets and know-how
- Manufacturing Multiple manufacturing facilities (Aachen, Germany and Rochester, NY USA)
- Performance Highest performing commercial products in the world

Multiple Market Segments

- General & Specialty Lighting
 - Acuity Brands Lighting to exclusively use OLEDWorks' OLED Light Engines
 - Over 25 additional luminaire manufacturer partnerships
 - o Collaboration with Corning to enable bendable OLED lighting based on Willow glass
- Automotive & Embedded Lighting Collaboration announced with Audi
- **Micro-display** High-performance OLED micro-displays in development for consumer, commercial and military products

State-of-the-Art Manufacturing and Development

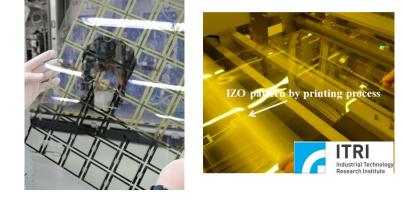
- Aachen high volume manufacturing line for automotive and general lighting products
- Rochester R&D tools and flexible manufacturing line for prototyping and specialty products
- Quality: ISO 9001, ISO 14001, ISO 45001 certified, Full traceability via a factory MES system
- IATF 16949 automotive certification qualification in process



OLEDWorks

Integrated OLED Substrates

What is an integrated substrate?


Transparent conductor (TC) – serves

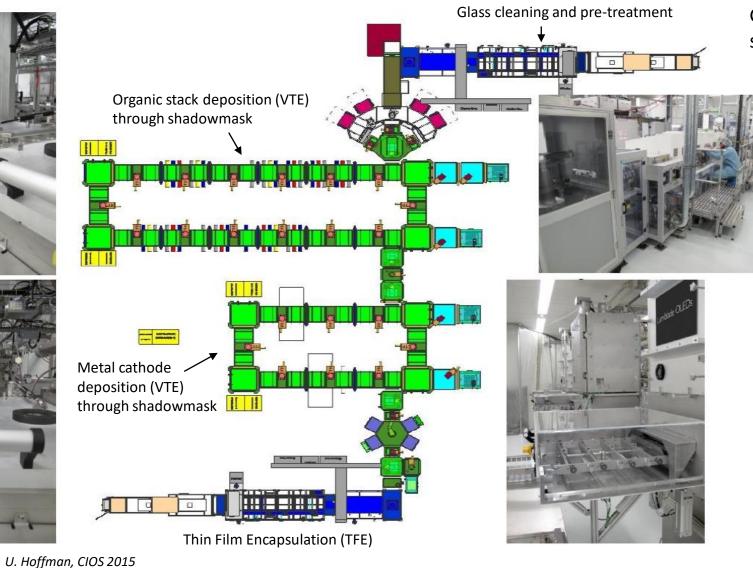
OLEDWorks

Integrated Substrate Manufacturing

How to reduce high cost of integrated substrates?

Opportunity	Challenges
Near term cost reduction for G2/2.5 rigid integrated substrates: < \$100/m ²	 Integrated substrate cost largely dependent on volume Most ITO suppliers located in Asia – high shipping costs Most ITO suppliers do not have printing capability for light extraction layer (ILE) or alternate transparent conductors (TCs)
Scale rigid substrate size from G2/2.5 to G4/5: < \$60/m ²	 Supply of G4/5 integrated substrates lacking Excessive shipping costs - need to locate raw glass and integrated substrate production line near OLED production line
Roll-to-roll (R2R) flexible glass substrate production for higher throughput: < \$40/m ²	 Moderate capital investment – locate R2R substrate production line near OLED production line Defect detection and quality control Process integration & patterning challenges Need flexible, printable internal light extraction technology

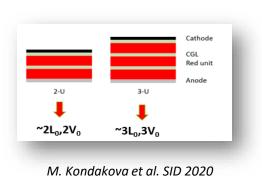
ITO-Coated Willow Glass


Width - 330 mm Length - 100 m

🜌 Fraunhofer

CORNING VON ARDENNE

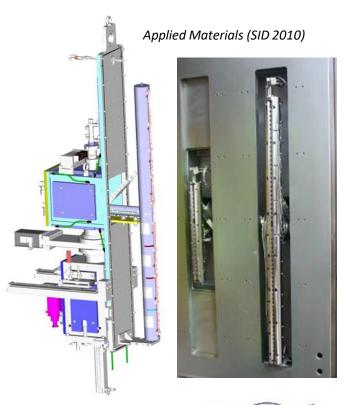
OLED Production Line



G2.5 production line capable of 2-6 stack OLEDs with 40+ organic layers

Ag Cathode
PH R+G unit
CGL
FL B unit
CGL
PH R+G unit
CGL
PH R+G unit
CGL
FL B unit
CGL
PH R+G unit
ITO
Internal Extraction Layer
Glass
Scattering foil

J. Spindler, M. Kondakova, et al. SID 2018



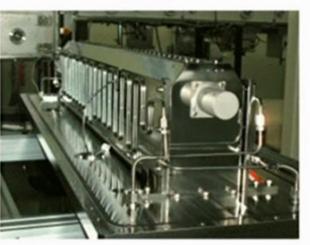
OLEDWorks

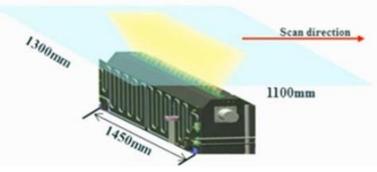
2021 DOE Lighting R&D Workshop

Organic Deposition by VTE (Vacuum Thermal Evaporation)

Early organic linear sources

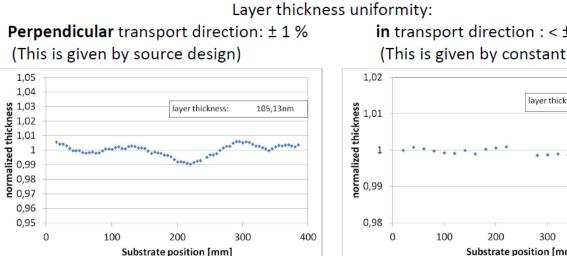
Kodak (2002)

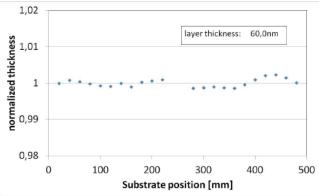


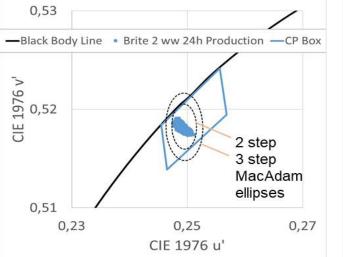


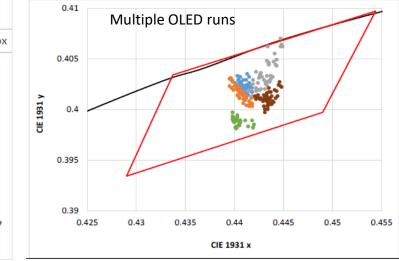
ULVAC (2004)

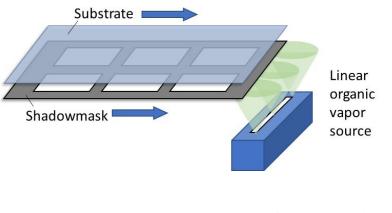
Sunic System (SID 2013)



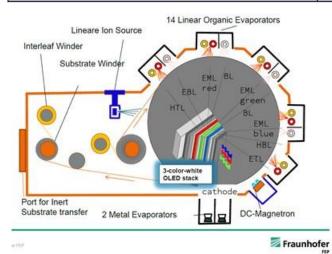

OLED Manufacturing Yield


OLED VTE Systems can meet performance requirements for high yield:


- Film thickness uniformity +/- 1% within ٠ sheet, +/- 2% over 10 day run
- Color point consistency within 2-step • MacAdam ellipse
- Material utilization > 60%•



in transport direction : < ± 1 % (This is given by constant speed)



CLEDWorks

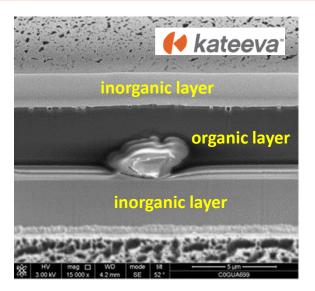
VTE Opportunities & Challenges

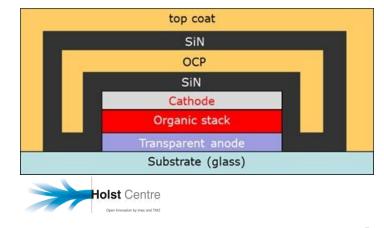
Opportunity	Challenges	
Increase throughput by reducing TACT time from 2-3 min to < 1 min	 Higher evaporation rates – organic materials must not degrade at higher temperatures Manage thermal load to substrate 	
Scale VTE system from G2/2.5 to G4/5	Large capital investmentNeed market demand to justify	1
Higher throughput roll-to-roll (R2R) VTE system	 Moderate capital investment with lots of risk Need supply of integrated flexible substrates Many integration & web handling challenges 	

FEP / Von Ardenne R2R VTE System

ITRI R2R VTE System

2021 DOE Lighting R&D Workshop

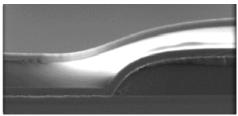

Thin Film Encapsulation (TFE)


Requirements:

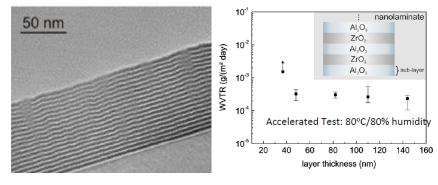
- Meets product lifetime expectations (10-20 yrs) and accelerated lifetime test requirements (>1000h @ 85C/85%RH for General Lighting and >5000h for Automotive)
- Thermally and mechanically stable, low stress
- Pinhole free, conformal and tolerant of particles
- Long term reliability no cracking, defect formation
- Inexpensive to manufacture and scale
- Ability to be patterned or removed from contacts
- Flexible, compatible with R2R processing

Current status: Alternating inorganic/organic layers

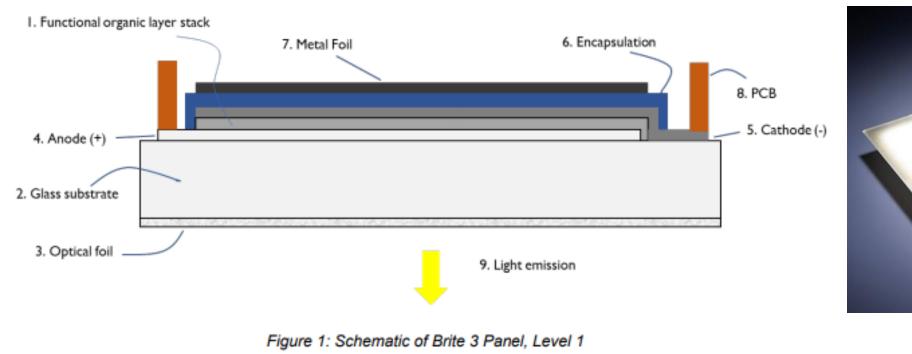
- Inorganic films by PECVD high maintenance and scaling cost
- Organic layers by printing requires change from vacuum to N₂ environment



Opportunity	Challenges
Multi-layer PECVD (no organics)	Still high costs of PECVDDecoupling of particle defects
All-ALD nanolaminates or ALD/PECVD hybrid (no organics)	 Decoupling of particles with thin inorganic films Film stress and cracking with bending ALD relatively slow process
Film type encapsulation: barrier foil adhered to OLED with moisture-absorbing adhesive	 Vacuum lamination without trapping air or moisture Handling/storage of barrier film to avoid moisture absorption Edge quality of cut films



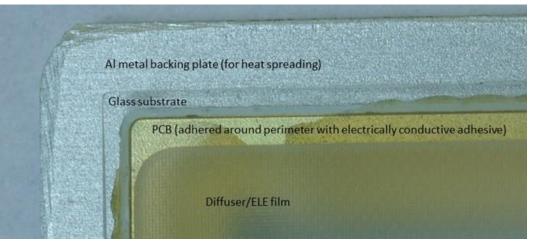
AKT Applied Materials, SID 2018


OLEDWorks

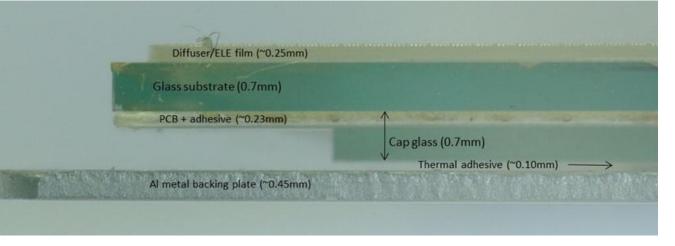
Veeco / Cambridge Nanotech

Backend Finishing – Rigid OLEDs

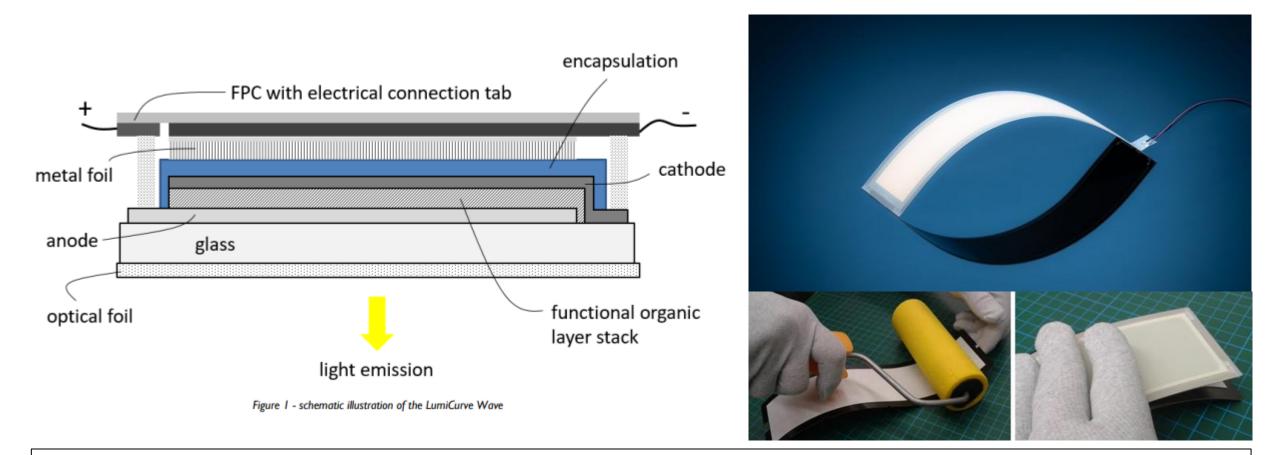
- Technology focus has been on substrates, electrodes, organics, encapsulation and light extraction
- Other components add significant cost (~33%): heat spreading, electrical connection


OLEDWorks

Backend Finishing – Rigid OLEDs



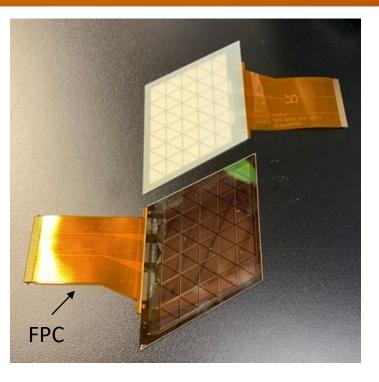
- Metal foil for heat spreading and encapsulation protection
- Perimeter PCB for uniformity and electrical connection of panel to drivers
- Optional metal backing plate (level 2 finish) for mechanical support and mounting options plus additional heat spreading
- Wires for external connection to driver

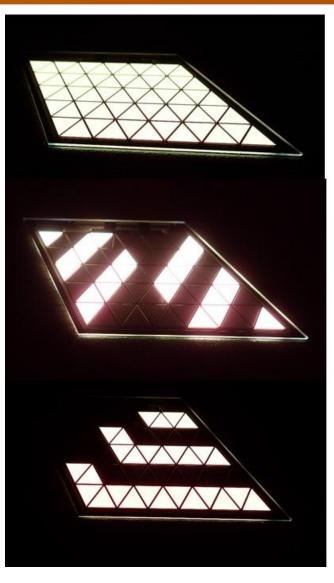


Competitor's OLED panel structure

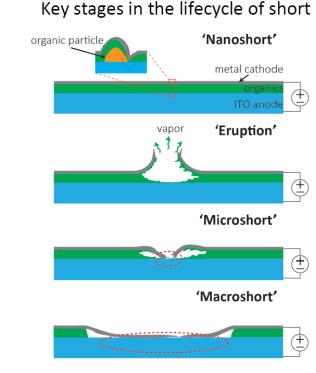
#OLEDWorks

Backend Finishing – Bendable OLEDs




- Still needs heat spreading metal foil
- Still needs perimeter contacting for uniformity and electrical connection of panel to drivers, but requires FPC, not PCB
- Additional need to protect bendable glass edges and surfaces with oversized films/foils
- Additional need to mount panel onto rigid support to maintain curvature and for mechanical support

Automotive and Segmented OLEDs

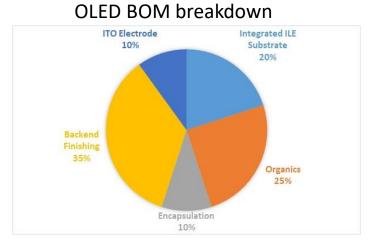

- Automotive panels include metallization on the substrate and flexible printed circuit (FPC) for electrical connection
- FPC connects to PCB containing driving electronics for control of individual lit segments, like a display
- Mirror-like 'chrome' finish no light extraction films

OLEDs are large area devices > 100cm² which are susceptible to particle defects and electrical leakage/shorts due to thin (~0.5um) organic stack separating electrodes.

Techniques for yield improvement:

- Short tolerant structures and techniques
- Smooth surfaces <5-10nm RMS, no abrupt changes in height
- Thicker organic stacks
- Routine cleaning of OLED deposition chamber, masks, etc.
- Electrical short reduction techniques
- Fuse-like layers, thin dielectric layers

High yield > 80% is achievable now, but continuous improvement needed to achieve > 95% for both rigid and bendable OLEDs



PSU DOE Project "Nature of Catastrophic Shorts in OLED Lighting", N. Giebink et al

Summary

- Manufacturing of OLED displays has matured and achieved economies of scale with Gen 10+ factories being commissioned in Asia
- OLED lighting manufacturing still has the opportunity for lower cost manufacturing facilities using R2R or combined R2R/R2S
- Cost reduction important for market expansion, especially for general lighting
- Lower cost solutions needed in several areas:
 - Backend finishing simplified materials and process
 - Integrated substrates light extraction, electrodes
 - Organics reduced # of stacks, better utilization
 - Encapsulation lower cost solutions

