High Performance Green LEDs for Solid State Lighting

Cheyenne Lynsky¹, Guillaume Lheureux¹, Feng Wu¹, Yi Chao Chow¹, Ryan White¹, Bastien Bonef¹, Steven DenBaars¹, Shuji Nakamura¹, Yuh-Renn Wu², Claude Weisbuch^{1,3}, Jim Speck¹

¹Materials Department, University of California, Santa Barbara, California 93106, USA ²Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan ³Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau Cedex, France

UC SANTA BARBARA

DOE SSL 2021 Lighting R&D Workshop

Project motivation and objectives

Topics Supplement. DOE Office of Energy Efficiency & Renewable Energy September 2017.

M. Auf der Maur, *et al.*, Phys. Rev. Lett. 116, 027401 (2016).

G. Lheureux, et al., J. Appl. Phys. 128, 235703 (2020).

R&D approach

Engineering against Shockley-Read-Hall

Advanced design

Polarization engineering

Voltage reduction

Advanced characterization

UC SANTA BARBARA

Project outcomes: origin of excess voltage in green LEDs

Green LEDs with varying QW number \rightarrow increase in V_F with each additional QW

Simulations based on landscape theory to account for alloy disorder

Agreement between experiment and 3D simulations without adjusting polarization parameters

Polarization induced barriers at the GaN/InGaN (lower barrier/QW) interfaces contribute to large ΔV_F in MQW green **LEDs**

C. Lynsky, et al., Phys. Rev. Materials 4, 054604 (2020).

5 10

50 100

InGaN QW

AlGaN Cap

J = 0 A cm⁻²

Bias = 0 V

 $J = 10 A cm^{-2}$

5.08 V

150

6.08 \

4.10 V

p-side

Project outcomes: origin of excess voltage in green LEDs

3D simulations based on landscape theory to account for alloy disorder

Compared blue and green LEDs with either 1 or 5 QWs

G. Lheureux, et al., J. Appl. Phys. 128, 235703 (2020).

UC SANTA BARBARA

Simulated 1.9 V penalty at 10 A cm⁻² going from 1 QW to 5 QW for green LEDs

Simulated 0.45 V penalty at 10 A cm⁻² going from 1 QW to 5 QW for blue LEDs

100% Polarization

Project outcomes: origin of excess voltage in green LEDs

Higher avg. carrier density, radiative recombination rate in top QW compared to deeper QWs

Artificially set piezoelectric and spontaneous polarization values to 0%

At 0% pol. very small penalty for blue LEDs, still large penalty for green LEDs from 1 to 5 QWs

For green LED, extreme QWs have highly unbalanced carrier densities, leads to central QW having highest R_{rad} at low J

Evidence of sequential injection of carriers due to large band offsets present in green LEDs, also contributes to large ΔV_F

0% Polarization

G. Lheureux, et al., J. Appl. Phys. 128, 235703 (2020).

Project outcomes: V-defect engineering

Demonstrated from 522–621 nm for GaN on Si Attribute low V_F to V-defects from superlattice Semipolar sidewall QWs \rightarrow low polarization barrier Improved hole injection into deeper QWs UCSB approach: V-defect engineering on sapphire Difference between GaN on Si and GaN on sapphire is threading dislocation and V-defect density *Increase* TD, V-defect density by increasing NH₃ flow

UC SANTA BARBARA

130 nm-p-GaN 10 nm-Al_{0.2}Ga_{0.8}N EBL QW×8 $\begin{cases} 13.5 nm$ -GaN 2.5 nm-In_{0.3}Ga_{0.7}N SL×32 $\begin{cases} 2 nm$ -GaN 3 µm-n-GaN 100 nm-AlN buffer 1 mm-Si substrate

F. Jiang, et al., Photonics Res. 7, 144 (2019).

C. Lynsky, et al., J. Cryst. Growth, Accepted (2020).

Project outcomes: V-defect engineering

anoman	
cathodolum	
hows increa om ~4x10 ⁸	
nterrupt arov	
B to charac	
samples g	
ow during t	

Panchromatic cathodoluminescence shows increase in TDD from ~4x10⁸ to ~1x10⁹ cm⁻²

Interrupt growth after last QB to characterize surface

3 samples grown with either 3, 4, or 5 slm NH_3 flow during the temperature ramp and HT UID GaN

NH₃ flow (slm)	Avg size large defects (nm)	Density large defects (cm ⁻²)	Density small defects (cm ⁻²)	Total defect density (cm ⁻²)
3	184 ± 15	1.95×10^{8}	2.18×10^{8}	4.13×10^{8}
4	206 ± 17	2.64×10^{8}	3.56×10^{8}	6.19×10^{8}
5	174 ± 27	5.05×10^{8}	1.16×10^{9}	1.66×10^{9}

2.6x increase 5.3x increase

4x increase

C. Lynsky, et al., J. Cryst. Growth, Accepted (2020).

UC SANTA BARBARA

U.S. DEPARTMENT OF

Recent and future work

Exploring V-defect engineering for long wavelength LEDs ($\lambda = 525 - 625$ nm) on sapphire and silicon substrates

Combining experimental, advanced characterization, and 3D simulations methods to realize high WPE long wavelength LEDs with reduced current droop

Electroluminescence spectra at 5 mA of green to red LEDs grown at UCSB

TEM and EDX of 7 QW red LED with engineered V-defect

Thank you