OLEDWorks

Material Development for OLED Lighting Panels

Made by Vacuum Deposition

Marina Kondakova

2021 DOE Lighting R&D Workshop

OLED Lighting Market Segments

OLEDWorks

<section-header>General LightingHospitality
Office and
Corporate
Healthcare
Education
RetailMuseums/
Galleries
ResidentialImage: Corporate
Education
RetailMuseums/
Galleries
Corporate
LocotoImage: Corporate
Education
RetailImage: Corporate
Corporate
LocotoImage: Corporate
Education
RetailImage: Corporate
Corporate
LocotoImage: Corporate
Education
RetailImage: Corporate
Corporate
LocotoImage: Corporate
Education
RetailImage: Corporate
Corporate
RetailImage: Corporate
Education
RetailImage: Corporate
Corporate
RetailImage: Corporate
Education
RetailImage: Corporate
Corporate
RetailImage: Corporate
RetailImage: Corporate
Retail<

OLED Lighting = Design Freedom

Embedded Lighting Automotive Rail & Marine Appliances Medical Furniture

OLEDWorks Brite 3 Panels for White OLED Lighting

|--|

Brite3 Family

- The brightest commercial OLED panel with up to 300 lumens and 75-85 lm/W
- Warm white (3000K) and neutral white (4000K) , CRI of > 90 and R9 >50
- Meets performance expectations (output, efficacy, LT, robustness) for many applications
- Light for all interior applications that desire high performance lighting
- Wider market opportunities available if cost can be lowered and efficacy increased

Matrix Wall Surface

YOLED2481

Olessence

Gravity dual pendant 2021 DOE Lighting R&D Workshop 3

OLEDWorks Brite 3 Panels for White OLED Lighting

Brite3 Family

- Multi-stacked hybrid OLED structures (FL blue, phosphorescent green/red emitters)
- Internal and external light extraction
- Rigid 0.7mm glass substrate
- LumiCurve Wave: Corning Willow® glass (0.1 mm) panel thickness 0.5 mm

OLEDWorks

>30 organic materials across products

Next Generation of OLED Panels

Panel Generation	Brit	te 3	Brite 4 target		
Brightness (cd/m ²)	3000	8000	3000	8000	
Flux (lumens)	100	300	100	300	
Efficacy (LPW)	85	75	120	100	
LT70 <mark>(</mark> khr)	100	30	>100	50	

Brite 4 target: >100 LPW

To achieve >100 lm/W and longer lifetime:

- Advanced OLED materials for vacuum deposition
- More stacks, lower voltage per stack, improved CGL
- Improved thermal stability
- Highly efficient light extraction
- Lower light absorption (transparent TCO, ILE, organic layers)

OLED Challenges:

- Efficient and stable blue emitter with right spectrum.
- Phosphorescent efficiency improvement
- Stable host material(s) and materials for blocking layers.
- > Low voltage transport materials.

Blue Emitter Development – Fluorescence

Fluorescence

x Insufficient harvesting of triplet excitons

- ✓ Low cost
- ✓ Deep blue color, narrow spectrum, works for lighting
- ✓ OLED lifetime

Currently ~ 10%EQE Further improvement by OLED engineering (EBL, HBL, etc) Device structure optimized for TTA $IQE \leq 25\%$ before mid'00s $IQE \leq 40\%$ before ca. 2008 Molecular orientation Reduction of spectral width

Performance of blue fluorescent devices, Idemitsu Kosan materials

 10 mA/cm^2

	Device	Device Type	Emitter	V	CIEx	CIEy	cd/A	EQE,%	nm	LT95, hrs	Ref
	1	BE	BD1	3.4	0.136	0.100	9.5	10.7	458		IDK, SID2018, 6.3
I	2	BE	BD2	3.8	0.136	0.099	9.0	10.3	457		IDK, SID2018, 6.3
I	3	TE	BD2	3.8	0.142	0.043	8.4		458	770	IDK, SID2018, 6.3
	4	BE	BD3	3.7				9.8	460		IDK, SID2020, 48.2
	5	TE	BD3	3.7	0.138	0.049	9.9		460	811	IDK, SID2020, 48.2

Cynora: cyBlue Booster

15% more efficient than comparative emitters

V

cynora.com/technology-and-products/cybluebooster/

Blue Emitter Development

Phosphorescence

- ✓ 100% Exciton harvesting
- ✓ Color tuning via ligand design
- \checkmark Wider spectrum, works well for lighting
- $\checkmark\,$ OLED lifetime for PH green and $\,$ red
- x Higher voltage compared to FL device
- x Blue PHOLED lifetime

TADF

- ✓ 100% Exciton harvesting
- ✓ Organic materials, potentially cheap
- ✓ Broad spectrum
- x Emitter development ongoing
- x OLED Lifetime

Reineke, Nature Photonics, 2004, 269 **Figure 1** Key photophysical differences between phosphorescent and TADF-type emitters. **a,b** Simplified Jablonski diagrams for phosphorescent (**a**) and TADF-based (**b**) emitters. Important rates k_i are indicated. r, radiative; nr, nonradiative; F, fluorescence; P, phosphorescence; ISC, intersystem crossing; RISC, reverse ISC; ΔE_{sT} , singlet-triplet splitting. **c**, Schematic showing the difference between the spectral distributions of phosphorescence (red curve) and TADF (dashed green curve) emissions.

Blue emitters with < 470 nm max Blue PHOLED lifetime improvement? Band gap ~ 1/LT Need (Host + Emitter) EML system

Technology was introduced in 2010-2012 Short lifetime for blue TADF OLEDs (Host +TADF emitter) EML system The absence of stable hosts complicates development of the emitters

Blue Emitter Development - Hyperfluorescence

Hyperfluorescence (HF)

- ✓ 100% Exciton harvesting
- ✓ Deep blue color
- x 3 component complex system
- x OLED lifetime

Nakanotani, et al. Nature communications, 5:4016,2014.

Simultaneous development of TADF-assistant dopant and fluorescent emitter. LT improvement required.

LT improvements in HF OLED vs classic TADF:

Further reduction of exciton residence times; Exciton energies of TADF co-dopants are reduced, less excited-state chemistry/instability;

High efficiency devices operate at reduced current.

Kyulux

Latest achievement blue HF (SID2020)

Color	Peak, nm	FWHM	cd/A	LT95 at 1000 nits, hrs
Blue	470	23	43	250

Kyulux, SID2020, 6.2

OLEDWorks 2021 DOE Lighting R&D Workshop 8

Performance of Hyperfluorescent OLED Devices

Kim et al, LG Display, SID 2020, 6.1

Top-emitting OLEDs

Bottom-emitting OLEDs

	Device	v	CIEx	CIEy	nm	FWHM, nm	EQE,%	LT95*, hrs
1	F-OLED, 2%	4	0.11	0.12	472	16	9.4	650
2	TADF-OLED	3.7	0.2	0.44	494	74	22.7	300
3	HF-OLED,FD_0.5%	3.9	0.18	0.36	474	36	20	300
4	HF-OLED,FD_2%	3.9	0.16	0.27	474	20	13	30
								*at 300 nits

>2X LT improvement for blue HF devices required.

Today development of hyperfluorescent blue EML seems the most promising for LT and EQE. Combination of (TADF assist+FL dopant) is needed. New materials should be tested in advanced OLED structures.

2021 DOE Lighting R&D Workshop 9

Blue Stack Performance Improvement

New emitters are tested in a single stack OLEDs

Luminous efficacy of blue emitters

- Objective: Achieve required CCT (3000K, 4000K) with using as few blue units as possible
- Choose a material providing highest blue index , i.e., tristimulus Z value at a certain current J

Z/J = ([1-CIEx-CIEy]/CIEy) * (L/J)

L = Luminance (cd/m²)

J = Current density (A/m²)

Merit	Priority
Blue index (Z/J)	High
Lifetime	High
Impact on CRI for white OLED	Medium
Cost	High

Alternatively, BI = (L/J)/CIEy Both BI give same relative score for the blue emitters

Blue stack improvement for Lighting panels:

450 nm - 465 nm emission maximum. At least 25% improvement of Z/J. IEL extracts blue light less efficiently compared to green and red . 50% LT improvement (LT95>400 hours at 1000 nits)

2021 DOE Lighting R&D Workshop10

Phosphorescent Stack Improvement - Emitters

Phosphorescent effciency and stability improvement Materials needed: host/emitters/ EBL/HBL

Emitters: 520-550 nm green-yellow emitter with longer LT 620-626 nm red phosphorescent emitter with FWHM <45 nm phosphorescent amber emitter with CIEx,y (0.56, 0.43) for healthcare, accent and wayfinding lighting

Tyan, OLED Lighting seminar, SID 2013

Figure 4: Normalized bottom emission device EL spectra for an advanced narrow deep red emitter (red) vs. a conventional red (blue) and the same emitter red-shifted to the peak wavelength of the narrow emitter (green). The photopic response function (black, dashed) is also shown.

30-40% improvement of LE with narrow-spectrum red

Latest achievement Red HF

Color	Peak, nm	FWHM	cd/A	LT95 at 1000 nits, hrs
Red	617	44	32	>37,000

Kyulux, SID2020, 6.2

OLEDWorks 2021 DOE Lighting R&D Workshop 11

Margulies et al. SID2019, 65.1

Phosphorescent Stack Improvement - Host

FIG. 3. (Color online) Luminous efficiency roll-off characteristics for devices with varying mixed host composition. The OLED with 55 wt % TAPC:40 wt % PO15 mixed host was considered the optimized device with respect to a combination of low operation voltage and stable roll-off. Hence, the representative power efficiency for the optimized device is included (solid stars).

Chopra et al, Appl. Phys. Lett., 2010, 97, 033304 Materials needed: host/EBL/HBL

Host: Single host material preferable but can be pre-mixed

Mixed host:

Results in **voltage reduction**, lower effciency roll-off with current density, improved effciency and LT

- Consists of hole- and electron-transporting components
- High HOMO and low LUMO are compatible with high triplet energy
- Improves charge injection and transport
- Eliminates/reduces internal charge accumulations at or near interfaces

Stability of pre-mixed host composition during several cycles of evaporation at high rates is required.

CLEDWorks 2021 DOE Lighting R&D Workshop 12

- Development of hyperfluorescent blue materials seems most promising to achieve high efficiency and sufficient stability among blue OLED technologies. TADF co-dopant and fluorescent emitter need to be developed in parallel for the best performance. Host development is also needed.
- Phosphorescent efficiency in white OLEDs can be improved by use of red dopants with narrow spectra.
- Development of new phosphorescent host materials is needed to improve OLED efficiency and LT.
- All new materials must be cost effective.
- Any new materials need to be tested in combination with the state-of-the-art materials used in advanced OLED lighting structures to verify their performance.

