Glare and Diffuse Sources Characterizing Glare

Nathaniel Jones, PhD Building Physicist ARUP

What isHow do weHow do weGlare?Measure Glare?Predict Glare?

What is Glare?

8

Disability Glare

E Patterson / Understanding Disability Glare

Lee Sullivan / Lake Norman Media

Failure to form a retinal image due to *excessive brightness* or *low contrast*

Discomfort Glare

Alstan Jakubiec / Christoph Reinhart

Naomi Miller / PNNL

Pain caused by object in the field of view that is brighter than the luminance to which the observer is adapted

Visible Range

We perceive only *3 orders of magnitude* in luminance without adjusting our eyes

Christoph Reinhart / Daylighting Handbook and Peter Lamb

Rules of Thumb Field of View

Assumption: Don't look up!

Based on IES DG-18-08

Rules of Thumb Contrast Ratio

Based on IESNA Lighting Handbook, 9th edition

Colors might "clash"

but

Color is not considered in glare

How do we Measure Glare? ALLELIN

Photographing Glare

Jan Wienold and Jens Christoffersen, 2006

Glare Metrics

Luminance vs Contrast

How Big is the Light Source?

Large solid angle 25-30,000 cd/m²

Small solid angles 1.5 million cd/m²

CIE JTC7 provides an approach for calculating "effective" luminous area

Position Index

Glare Metrics

Visual Comfort Probability

$$VCP = 279 - 110 \times \log_{10} \left(\sum_{i=1}^{n} \left(\frac{0.5L_i (20.4\omega_i + 1.53\omega_i^{0.2} - 0.075)}{E_{avg}^{10.44} P_i} \right)^{n^{-0.0914}} \right)^{n^{-0.0914}}$$

 $Glare = \sum_{i=1}^{L_i^{exp}} \frac{L_i^{exp} \omega_i}{L_b^{exp} P_i^{exp}}$

$$CGI = 8 \times \log_{10} 2 \frac{1 + E_d / 500}{E_d + E_i} \sum_{i=1}^n \frac{L_i^2 \omega_i}{P_i^2}$$

Unified Glare Rating

Daylight Glare Index

DGI

$$= 10 \times \log_{10} 0.48 \sum_{i=1}^{n} \frac{L_i^{1.6} \Omega_i^{0.8}}{L_b + 0.07 \omega_i^{0.5} L_b}$$

Glare Metrics

	DGP	DGI	UGR	VCP	CGI
Imperceptible	< 0.35	<18	<13	80 - 100	<13
Perceptible	0.35 - 0.40	18 - 24	13 – 22	60 - 80	13 - 22
Disturbing	0.40 - 0.45	24 – 31	22 - 28	40 - 60	22 - 28
Intolerable	>0.45	>31	>28	<40	>28
	For Daylight		For Electric Light		

Unified Glare Rating Limit

	UGR		UGR-L
Imperceptible	<13		
Perceptible	13 – 22	Technical drawing	16
		Offices	19
		Reception areas	22
Disturbing	22 - 28	Archives, stairs and lifts	25
		Corridors and passageways	28
Intolerable	>28		

EN 12464-1

Simulation

Simulations can match reality with extreme closeness ...

... and now many software products let you do this

Radiance

DIALux

SOLEMMA

360° Glare

Lesson: Your view direction, the room shape, and its furniture and finishes matter!

Alstan Jakubiec

Reported Luminaire "Glare"

Note: This is **not** what the occupant experiences

In Summary

Glare happens when there is *too much luminance* for the eye to (comfortably) handle

We can measure glare using *photography* or *simulation* – but existing metrics are imperfect

Glare measurement must account for the *luminaire*, the *room*, and the *viewer*

Glare and Diffuse Sources Characterizing Glare

Nathaniel Jones, PhD Building Physicist nathaniel.jones@arup.com ARUP

