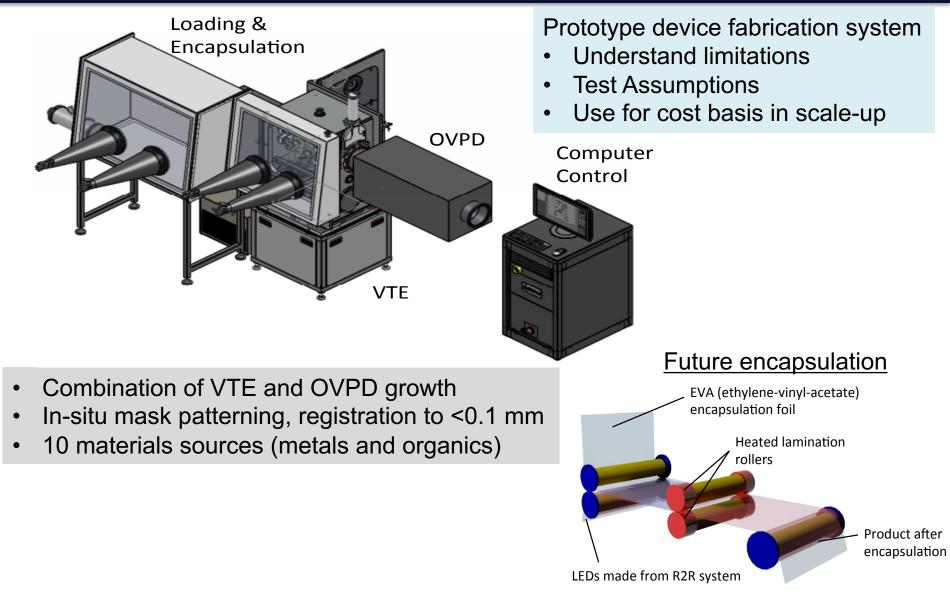
R2R Manufacturing of WOLED Lighting -Methods-Results-Costs-

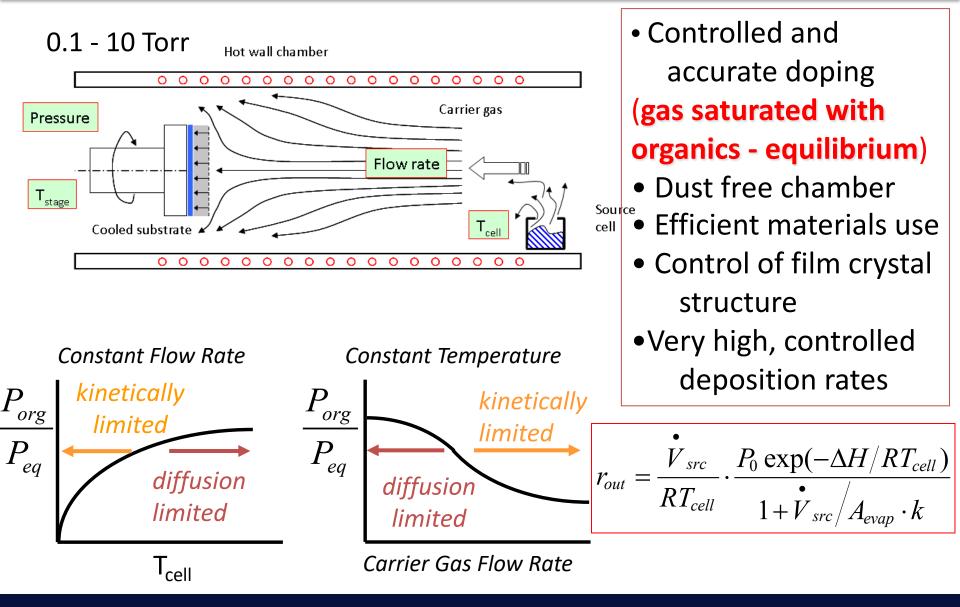
Stephen Forrest Boning Qu Mike Hack Max Shtein

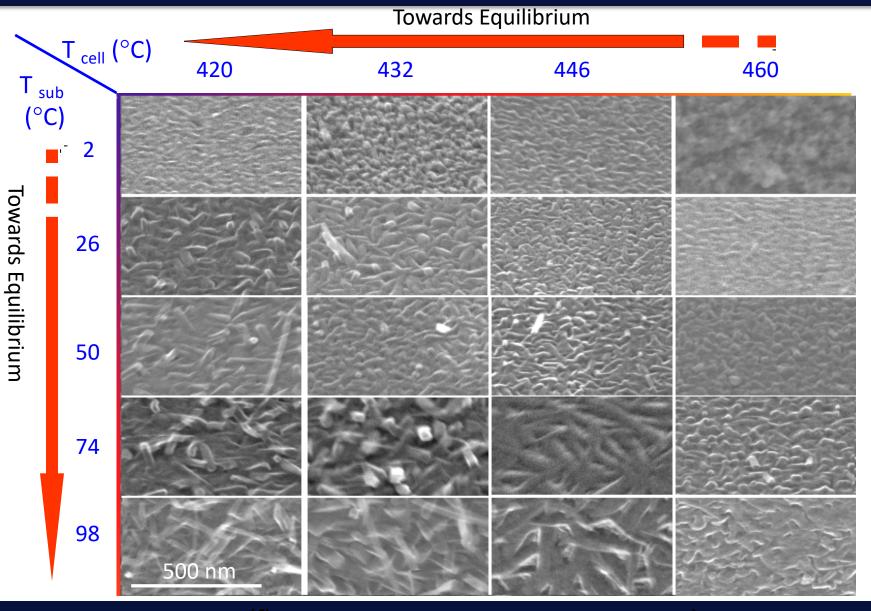
stevefor@umich.edu

UNIVERSITY OF MICHIGAN

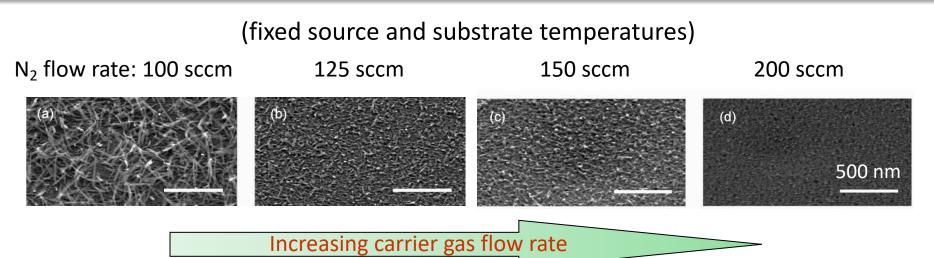


Lab System Overview

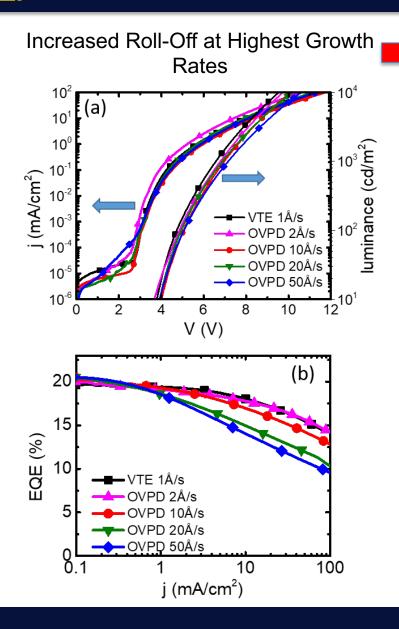



2	Vapor (PVD)	Condensed Phase	Organic PVD
Examples	VTE OVPD OVJP	Inkjet Nozzle Printing LITI μ-contact printing	
Materials	Small molecules	Small molecules or polymers	(a)
Multilayer Structures	Molecularly sharp interfaces	Less thickness ctrl. May damage	VTE (b)
Co-deposition	Even Mixing Amorphous film	heterojunctions & complicate doping.	OVPD
Patterning	Thin Metal Mask Direct Print	Direct Print	OVJP
Atmosphere	Vacuum	Inert Gas	
Media	None	Solvent or xfer film	
Use	Commercial & Research	Research	(c) Shtein <i>et al. J. Appl. Phys.</i> 93 , 7, 4005 (2003)

Organic Vapor Phase Deposition: Concept


M. Shtein, et al., J. Appl. Phys., 89, 1470 (2001).

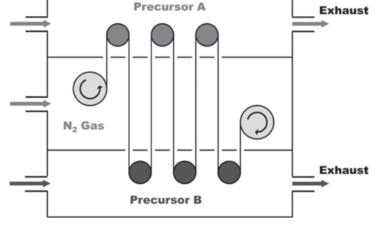
Nanomorphology control by temperature


flowrate = constant, pressure = constant

Nanomorphology control by flow rates M

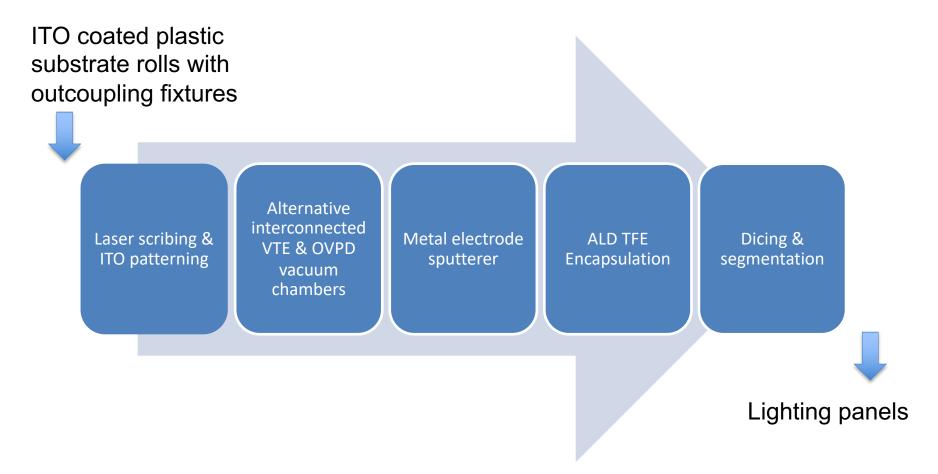
Crystals	Needle morph.	Flat morph.	
	Long, large	Uniaxial, small	
Source temperature	Low	High	
Substrate temperature	High	Low	
Carrier gas flow rate	Low	High	
Chamber pressure	Low	High	

OLED Performance vs. Growth Rate



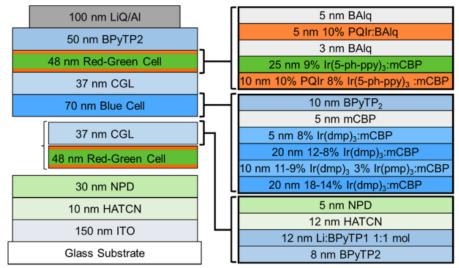
Heterogeneous Nucleation of Defects at High OVPD Growth Rates

STEM	
	MoO ₃ /Ag
EML 50 Å/s	
	MoO ₃
EML 20 Å/s	
	MoO ₃
EML 10 Å/s	Mag
EML 2 Å/s	MoO ₃
EML VTE 1Å/s	MoO ₃
50nm	MoO ₃ /Si
50 nm	lr(ppy) ₂ (acac)
	n(ppy)2(acac)
EML 50 Å/s	
	lr(ppy) ₂ (acac)
EML 20 Å/s	
LIVIL ZU AYS	
	lr(ppy) ₂ (acac)
EML 10 Å/s	
	lr(ppy) ₂ (acac)
EML VTE 1 Å/s	n(ppy)2(acac)


Alternative R2R encapsulation: ALD

- Current OLED display encapsulation: CVD thin film encapsulation (TFE)
- Atomic layer deposition (ALD) advantages:
 - Pin-hole free layer
 - R2R compatible
 - Low WVTR < 2x10⁻⁶ (Ref. E.G. Jeong, et al, Journal of Information Display, 2020)
- Approach at U of Michigan:
 - Test package: electrical Ca-test circuit covered by ALD-grown metal oxide TFEs
 - Test set-up: customized acrylic box with epoxy seal and controlled humidity
- Impact on cost analysis:
 - One or two additional vacuum chambers
 - Negligible material cost increase

Ref. S.M. George, et al, 2011 Society of Vacuum coaters, 2011.



Target: \$10 /klm or \$100 /m² (lighting at 10 klm/m²)

Reliable efficient WOLED structure design

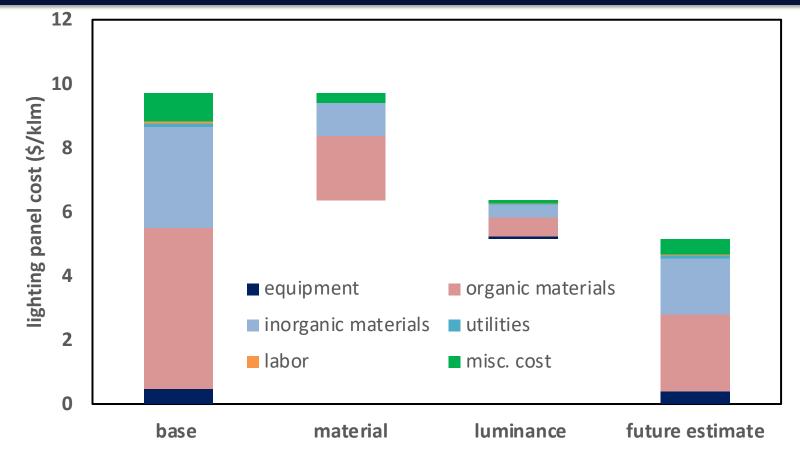
Ref. Caleb Coburn, et al, ACS Photonics, 2018.5

- 3 R-G cells and 1 Blue cell
- CRI = 85.2, CCT = 2890 K
- EQE =141% with outcoupling scheme
- LPE= 47.2 lm/W at 1000 nits.
- T70 = 50000 hr.
- Intensity: 200k cd/m²
- [CGL+ETL+HTL+cathode] in VTE
- [R-G-B EML] in OVPD
- 24 VTE subchambers +10 OVPD subchambers (blends) + sputterer (Al)

Production Capacity

Capacity	Unit	Base case	
Rolling speed	m/hour	540	
Roll prep / loading time	hour/hour	0.05	
Substrate width	m	1.5	
Campaign Length	Month	11	
Maintenance Time	Month	1	
Production per line	m ² /machine/year	6094 k	

1.5 m-long growth window, 5 nm/s rate, thickest organic layer 50nm \Rightarrow 0.15 m/s


→ 5% prep/loading time

Uniform growth in Gen6 chamber (R. Lunt, et al, APL, 2009)

Lighting panel cost

- 10% miscellaneous cost
- Material cost reduction
- 20% higher operation luminance compared to initial assumption (10000 lm/m²)
- Future estimate: \$5.2/klm

	DoE 2019*	DoE 2025*	DoE 2035*	R2R
Capital cost (\$M)	50	200	400	293
Capacity(m ² /yr)	25k	500k	2400k	6094k
Depreciation(\$/m ²)	400	80	35	4.8
Organic cost(\$/m ²)	200	80	35	50.2
Inorganic cost(\$/m ²)	600	200	100	31.6
Labor(\$/m²)	100	15	5	0.5
Others(\$/m ²)	50	10	5	1.1
Total unyielded(\$/m ²)	1350	385	180	88.2
Yield (%)	70	80	90	90
Total(\$/m²)	1930	480	200	98

* DoE EERE "2019 Lighting R&D Opportunities", Table 3.9. Current status and cost targets for OLED panels produced by traditional methods.

- R2R Systems can combine multiple deposition technologies (including encapsulation) for efficient, high throughput manufacturing
- OVPD provides extraordinary control over morphology, doping concentration, device structure
- DOE cost targets for WOLEDs can be met using high volume R2R deposition

Thanks to the DOE/EERE for support of this work