Assessing of Wireless Communication Technologies

Advanced Sensors and Instrumentation Annual Webinar
October 29, November 5, November 12, 2020

Vivek Agarwal, James A. Smith, Koushik A. Manjunatha
Idaho National Laboratory
Project Overview

• Goals and Objectives
 – Assessment of wireless communication technologies and their applications in nuclear environment to support development of a technology demonstration test plan
 – Advance the implementation of “smart” processes and structures to enable the ability to cost effectively create a large network of sensors and better data analytics for operational decisions
 – Develop three-tier sensing and communication strategy
 1. In-core: data signal from in-core to outside the pressure vessel
 2. Containment building: data from containment building to balance of plant network
 3. Balance of the plant network: transmit to the data cloud and control room.

• Participants (2020)
 – INL: Vivek Agarwal, James A. Smith, and Koushik A. Manjunatha
 – North Carolina State University: Cheryl Xu
 – Michigan State University: Yiming Deng

• Schedule
 – Milestone report completed, August 2020, “Wireless Sensing and Communication Capabilities from In-Core to a Monitoring Center”
Accomplishments

• Sensing Communication Infrastructure
 – Developed a three-tier strategy for wireless transmission of measurements to a monitoring center or the cloud

Tier 1: In-core and Containment Sensors

*Typical Multi-layer
- Gas tight shell
- Projectile shield

Pressurized pipeline setup with a harmonic RF sensor tag

Voltage of a Polymer Derived Ceramic (PDC) sensor as a function of temperature.

In-Core: High Temperature PDC Sensor (>1000 °C)
Accomplishments II

- **Tier 2: Containment Area Interrogator**
 - Sensors located in-core and containment area
 - Energize RF sensors and receive sensor signals
 - Process the signals and extract precise measurements
 - Transmit to balance of plant

- **Tier 3: Balance of Plant Network**

- **Documentation and Participation**
 - James A. Smith “Using a RFID Sensor as a Voltage Control Oscillator,” provisional patent no. 62/926,820
 - Participated on the IEEE working committee for IEEE 21451-7-2011 --Smart transducer interface for sensors
 - Milestone report
Technology Impact

- **Advances the state of the art for nuclear application**
 - Developed a three-tier strategy to obtain in-core measurements and wirelessly transmit to a data center
 - Technology maturity (TRL) varies between tiers
- **Supports the DOE-NE research mission**
 - Wireless sensors and data transmission will enable nuclear plants to compete
- **Impacts on the nuclear industry**
 - Reduce costs
 - Laying new cabling in nuclear plants is ≈$2,000 per foot in 2009 [1]
 - Industrial wireless expenses expected to drop from $20/foot to $2/foot in 2010 [2]
 - Increase productivity and plant efficiency
 - Reduce manual measurements
 - Make measurements in critical new areas such as the core
 - Have the confidence to operate with lower margins
 - Provide more effective data analytics for operational decisions
- **Commercialization**
 - License technology to power plant vendors or instrumentation suppliers

Conclusion

• Designed an in-core wireless sensing and communication system
 – Passively powered ceramic high-temperature sensors that are wireless
 – Provide real-time sensing in-core and within the containment structure
 – Capable of multi-sensing of temperature, pressure, strain, etc.
 – Integrated into a communication network for delivery to a processing center

• Identified two areas for additional wireless development
 – Transmission through the containment structure
 – Pressure vessel wall

• Provided intellectual property
 – James A. Smith “Using a RFID Sensor as a Voltage Control Oscillator,” provisional patent no. 62/926,820 and full patent application
 – Milestone Report: “Wireless Sensing and Communication Capabilities from In-Core to a Monitoring Center”

• Advanced technology that enables
 – Reduced costs
 – Increase productivity, plant efficiency, wide-ranging data analytics for operational decisions

• Questions
 – James.Smith@INL.Gov, vivek.agarwal@inl.gov