

Versatile Acoustic and Optical Sensing Platforms for Passive Structural Monitoring

Advanced Sensors and Instrumentation Annual Webinar October 29, 2020

Gary Pickrell Virginia Tech

Project Overview

- Goal
 - To develop an acoustic based sensing system capable of monitoring phenomena such as strain, temperature, pressure and corrosion to better evaluate the health of structural components in nuclear facilities
- Objective
 - Design and construct fused silica and single crystal sapphire sensing systems based on acoustic fiber Bragg gratings (AFBGs) and benchmark performance with optical fiber Bragg grating (OFBG) sensors
- Participants (2020)
 - Virginia Tech (University Lead), Oak Ridge National Laboratory (ORNL)
- Schedule
 - Granted no-cost, one-year extension (9/30/2021)
 - Delayed completion of M3CA-17-VA-VT-0702-0414 (previously 6/30/20) inability to access ORNL due to COVID-19 protocols

Accomplishments

 <u>M3CA-17-VA-0702-0412</u>: Radiation Exposure Testing of Fused Silica Based Acoustic Fiber Bragg Grating Sensors

Completed on time (12/31/2019)

- <u>M2CA-17-VA-VT-0702-0413</u>: Construction and Testing of the Sapphire Based Acoustic Fiber Bragg Grating Sensing System
 - Completed on time (6/30/2020)
- <u>M3CA-17-VA-VT-0702-0414</u>: Radiation Exposure Testing of the Sapphire Acoustic Fiber Bragg Grating Sensing System
 - Delayed due to COVID access restrictions at ORNL (6/30/2019)
 - Prototype sensing system was successfully installed on 9/24/20 and currently operating at ORNL
- <u>M3CA-17-VA-VT-07020415</u>: Laboratory Scale Performance Testing of Acoustic Based Fused Silica and Sapphire AFBG Sensing Systems

- Completed on time (9/30/20)

• One peer reviewed publication, one accepted for publication, two currently under review

Accomplishments

Real-Time Monitoring of Single Crystal Sapphire OFBGs

Time Domain Spectrum of Fused Silica AFBG Sensor

Gamma Radiation Exposure Testing of Prototype AFBG Sensing Systems

AFBG and OFBG Sensors Installed and Operating in the Gamma Irradiator at ORNL

Δ

Real-Time Long-Term Monitoring of Fused Silica AFBG Sensor and Thermocouple

Real-Time Monitoring of Single Crystal Sapphire AFBG Sensor and Thermocouple

Technology Impact

- The successful demonstration of the first-of-a-kind, low-cost, fullydistributed, multi-parameter sensing platform will contribute to the advancement of 3D sensor network monitoring solutions for nuclear energy systems.
 - The versatile and commercially viable sensing system fills the gap between low cost electronic sensors and high-performance fiber optic sensors.
- The research products generated from this project will provide technologies that support the efficient and clean energy production necessary for energy independence.
 - The diverse and multi-disciplinary research setting provides both faculty and students with the opportunity to cultivate a broad and diverse skillset that will provide benefit to the nuclear sciences, as well as the overall scientific community.
- Technology has been successfully demonstrated in a simulated laboratory environment (TRL=5) and well positioned for pilot/full scale system validation in a relevant environment (TRL=6,7)

Conclusion

- Accomplishments for the third project year
 - Successfully deployed and operated a prototype fused silica based AFBG sensing system in the gamma irradiator at ORNL
 - Designed and constructed sensing system based on single crystal sapphire AFBG sensors
 - Successfully deployed and operated a prototype single crystal sapphire AFBG sensing system in the gamma irradiator at ORNL
 - Demonstrated the performance of prototype fused silica and single crystal sapphire AFBG temperature sensing systems up to 1000°C and 1300°C, respectively.
- The accomplishments are consistent with the project goals, objectives and schedule.

Questions?

Contact information

- PI: Gary Pickrell
- Manager: Dan Homa

pickrell@vt.edu

dan24@vt.edu