

Cost-Benefit Analyses through Integrated Online Monitoring and Diagnostics

Advanced Sensors and Instrumentation Annual Webinar

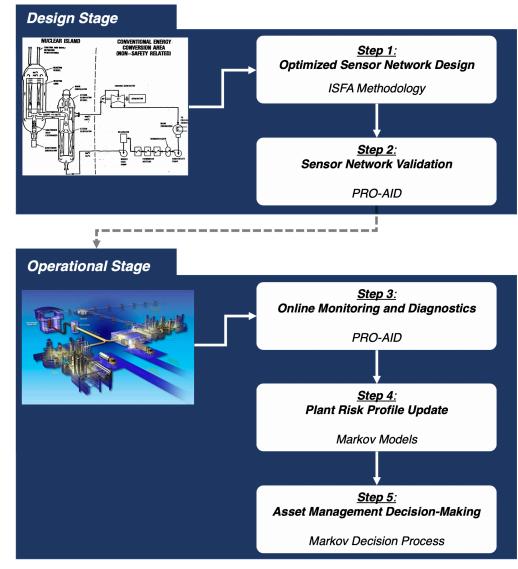
> October 29, November 5, November 12, 2020

Dave Grabaskas Argonne National Laboratory

Project Overview

Project Goal: Improve advanced reactor economics through:

- Optimization of the reactor sensor network design
- Intelligent asset-management decision-making during operation

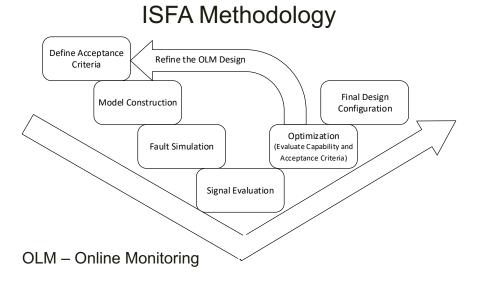

Participants

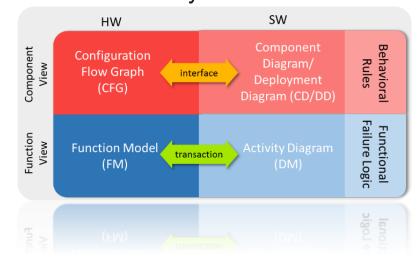
Schedule: FY20 - FY22

Summary of accomplishments

- Process
 Development
 - Established overarching strategy
 - Provides a complete approach from design through operations
 - Leveraging existing tools and methods
 - Expanding capabilities and integrating methods

Summary of accomplishments


- Sensor Network Optimization
 - M3: Optimization Acceptance Criteria
 - Identifies key criteria for sensor network optimization method, such as cost, system penetrations, reliability, security, etc.
- Intelligent Asset Management
 - M3: Integration of Online Monitoring into Risk Profile
 - Methodology developed for integrating online monitoring information into a real-time plant risk profile, consisting of the probabilistic risk assessment (PRA) and generation risk assessment (GRA)
- M2: FY20 Project Progress Report


Technology Impact

- Economics is the #1 focus
- Maximizing the value of instrumentation and expanding the impact of monitoring data
- Taking tools and methods that have been developed by alternate DOE programs (ARPA-E, NEET, ART) and creating an integral approach
- Working directly with industry to advance to demonstration and pursue commercialization

Accomplishments (1/3)

- Sensor Network Optimization
 - Integrated System Failure Analysis (ISFA) method
 - Developed by Ohio State University
 - Efficiently explores alternative sensor network designs
 - Expanding capabilities to facilitate new optimization acceptance criteria and allow sensor grading

ISFA Analysis Framework

Accomplishments (2/3)

- Online Monitoring and Diagnostics
 - Argonne tool: PRO-AID
 - Combines operational data & physics to diagnose plant conditions
 - Plant Risk Profile
 - Risk profile consists of both safety (PRA) and economic (GRA) perspectives
 - Method developed to integrate PRO-AID and risk analysis techniques to create a real-time plant risk profile

7

Accomplishments (3/3)

- Demonstration Analysis
 - General Atomic (GA): MHTGR design concept
 - Similar to the Framatome SC-HTGR design concept but significant design and analysis information available in the public domain (PSID, PSER, PRA, Design Package), which alleviates proprietary restrictions
 - Considering several test cases for suitability as part of demonstration analysis
 - Working with Framatome to identify relevant problems of interest

Looking Ahead...FY21 Activities

- Sensor Network Optimization
 - Complete expansion of ISFA capabilities
 - Finalize structure for ISFA and PRO-AID communication
- Intelligent Asset Management
 - Integrate machine learning technique of Markov Decision Processes (MDP) into existing Framatome assetmanagement methods and tools
- Demonstration Analysis
 - Initiate MHTGR analysis, to be completed in FY22

Conclusion

- Seeking to improve advanced reactor economics through advancements in sensor network design and asset-management decision-making
- Overall framework established and tools are in place, now diving into the details before FY22 demonstration analysis
- Further Questions: dgrabaskas@anl.gov