

High temperature embedded/integrated sensors (HiTEIS) for remote monitoring of reactor and fuel cycle systems

Advanced Sensors and Instrumentation Annual Webinar October 29, 2020

PI: Xiaoning Jiang, NC State University

TPOC: Vivek Agarwal, INL

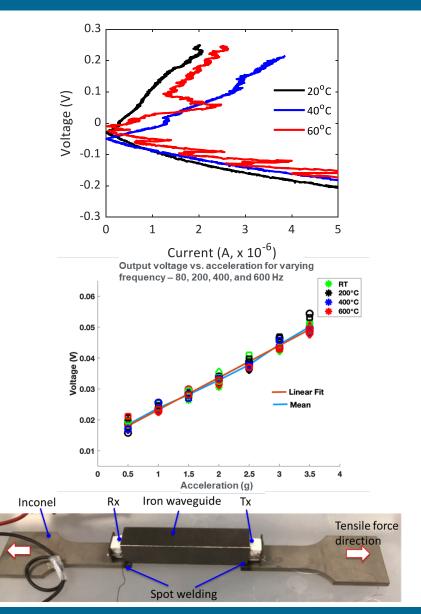
Project Overview

Goal and Objective

To develop and evaluate high temperature embedded/integrated sensor systems (HiTEISs) for applications in reactor and fuel cycle systems.

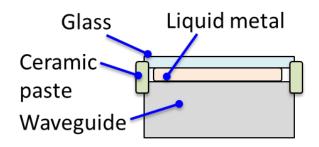
• Participants (2020)

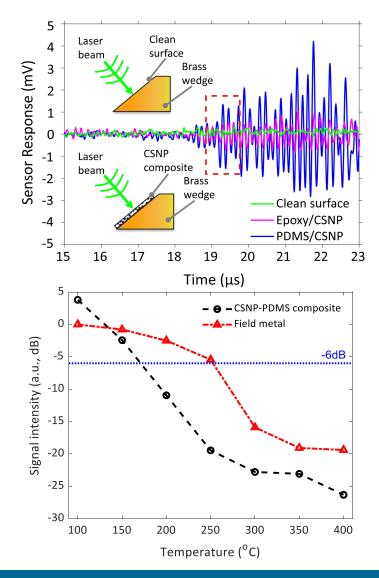
Xiaoning Jiang, PI, NC State University (NCSU) (Tasks 1, 2 & 3), Mohamed Bourham, Co-PI, NCSU (Tasks 2 & 3), Mo-Yuen Chow, Co-PI, NCSU (Tasks 2 & 3), Leigh Winfrey, Co-PI, Penn State University (PSU) (Task 1)


Howuk Kim, PostDoc, NCSU (Tasks 1, 2 & 3), **Bharat Balagopal**, PostDoc, NCSU (Tasks 2 & 3), **Sean Kerrigan**, PhD student, NCSU (Tasks 2 & 3),

Year	Task	Role	Responsibility	Note
1 & 2	HiTEIS design and development	HiTEIS development	X. Jiang	NCSU
		Sensor material radiation resistance	L. Winfrey	PSU
2, 3 & 4	HiTEIS Integration and characterization	Wireless communication system	M. Y. Chow	NCSU
		HiTEIS integration & characterization	X. Jiang & M. Bourham	NCSU
2, 3 & 4	Development of embedded sensors and laser ultrasound	Laser ultrasound transducer development	X. Jiang	NCSU
		Sensor radiation/corrosion resistance	M. Bourham	NCSU
		Wireless communication for embedded sensors	M. Y. Chow	NCSU

Schedule


Summary of Accomplishments


- Corrosion resistance of hightemperature (HT) sensors (Task 2)
 - Corrosion rate of sensing material is highly dependent on temperature, and reduce the potential lifetime
- Wireless Data Communication for HT Vibration Sensor (Task 2&3)
 - Succeeded in transferring HT vibration sensor data to a remote place* using the wireless communication system
- Nonintrusive/Embedded HT Stress Sensor (Task 2&3)
 - Demonstration of surface attached HT stress sensing
 - * Remote place where the sensor data is recorded is not restricted by a physical distance as long as a communication router is within 50m from the local sensing area

Summary of Accomplishments

- Candle Soot Nanoparticle (CSNP) Composite Based Laser Ultrasound Transducer (Task 3)
 - Polydimethylsiloxane (PDMS)/CSNP is an effective PA media applicable in a moderate temperature (<200 °C) condition
- Liquid Metal Assisted Laser Ultrasound Transducer (Task 3)
 - liquid metallic material was successfully demonstrated for HT laser ultrasound

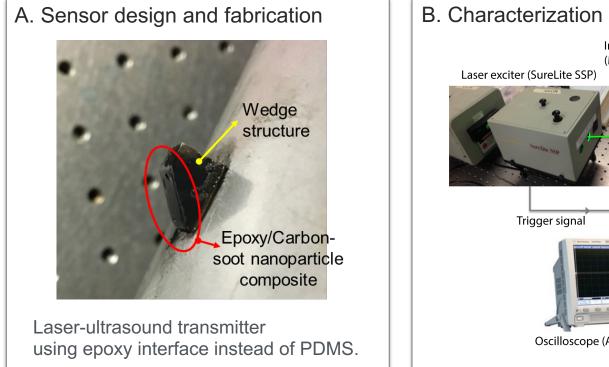
Technology Impact

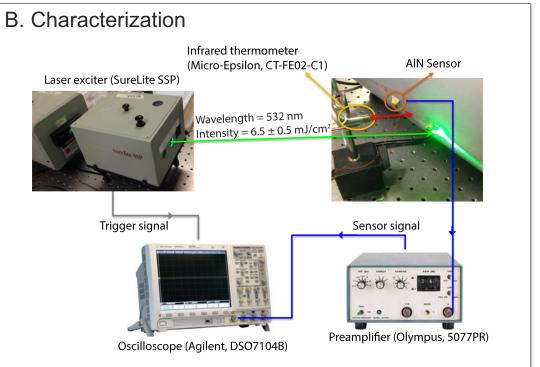
- Advances the state of the art for nuclear application
 Nonintrusive/embedded sensors under harsh environmental conditions utilizing innovative laser ultrasound generation techniques
- Supports the DOE-NE research mission
 - ✓ In-service monitoring of nuclear structures, ensuring nuclear energy supply with a reliable lifetime prediction
- Impacts the nuclear industry
 - Nonintrusive HiTEIS combined with wireless communication system for minimization of human influences
 - ✓ Laser ultrasound enabled remote structural health monitoring

• Will be commercialized

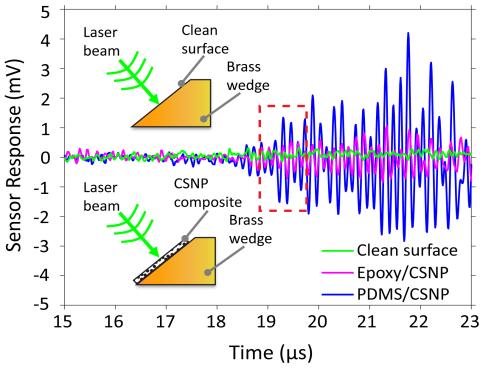
- ✓ A liquid metallic based HT laser ultrasound generator was prototyped and the technical feasibility has been demonstrated.
- University technology transfer office will investigate business models for commercialization with the filed invention disclosure (patent). (current TRL: 4-5)

Conclusion


- Feasibility of candle soot nanoparticle composite was demonstrated for HiTEIS applications with various interface materials (epoxy and PDMS).
- An innovative liquid metal based photoacoustic transducer was investigated and characterized at HT conditions.
- A wireless data communication system for HiTEIS was developed and validated through a compression-type HT vibration sensor.
- Nonintrusive/embeddable HT stress sensor was designed and fabricated. The HT performance will be tested after applying the HT insulation layer.
- The corrosion test results showed the necessity of the electrode insulating layer for the prolonged usage of the sensing material.
- During the extended project period, we will study HT wireless data communication for other sensing systems, sensor electrode insulating techniques for HT/radiation conditions, and laser ultrasound nondestructive testing.

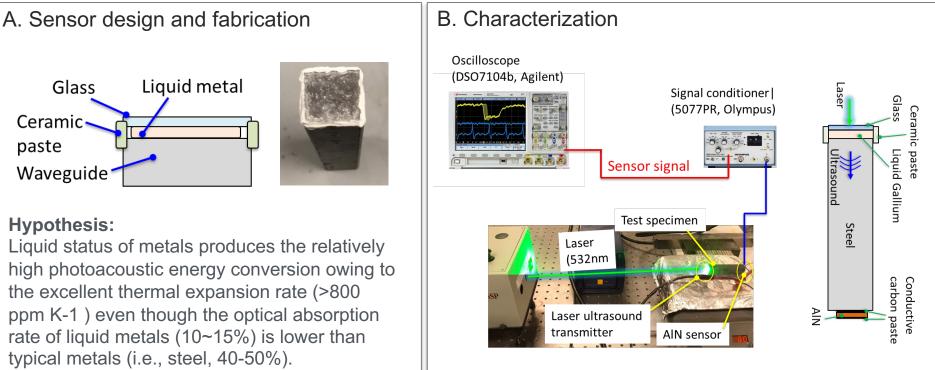

Contact: xjang5@ncsu.edu

<u>Accomplishment 1:</u> Candle Soot Nanoparticle (CSNP) Composite Based Laser Ultrasound Transducer (Task 3)

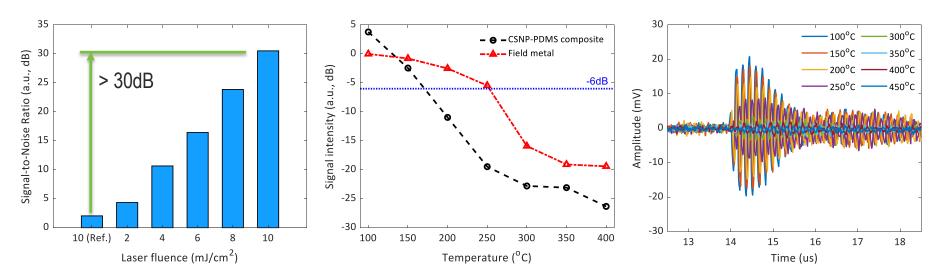

Purpose:

• To investigate the feasibility of the CSNP composite for HiTEIS applications and to observe the influence of the interface materials (e.g., epoxy and PDMS)

Results:


- a. 1.4-folds greater signal intensity when using PDMS/CNSP than the acoustic signal (pink solid line) produced by the epoxy/CSNP
- b. High thermal expansion of PDMS (i.e., $\beta_{\text{PDMS}} \sim 9 \times 10^{-4} \text{ K}^{-1}$ and $\beta_{\text{epoxy}} \sim 8 \times 10^{-5} \text{ K}^{-1}$) results in more effective PA energy conversion
- c. High acoustic mismatch between PDMS and brass (i.e., $Z_{PDMS} \sim 1.5$, $Z_{epoxy} \sim 2.9$, and $Z_{brass} \sim 34$ MRalys) was less dominant in PA effect.

- PDMS/CSNP is an effective PA media applicable in a moderate temperature (<200°C) condition
- The HT (>200°C) feasibility of PDMS/CSNP material needs to be investigated.
- Needs to study a new photoacoustic (PA) material instead of polymer-based composites for HT applications.


Accomplishment 2: Liquid Metal Assisted Laser Ultrasound Transducer (Task 3)

Purpose:

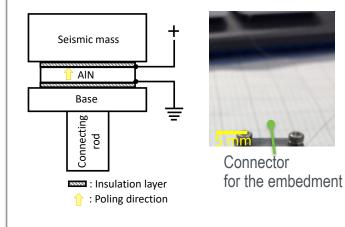
• To present a new PA transducer utilizing a liquid metallic material and to demonstrate the performance for the laser ultrasound generation

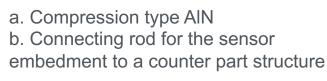
Results:

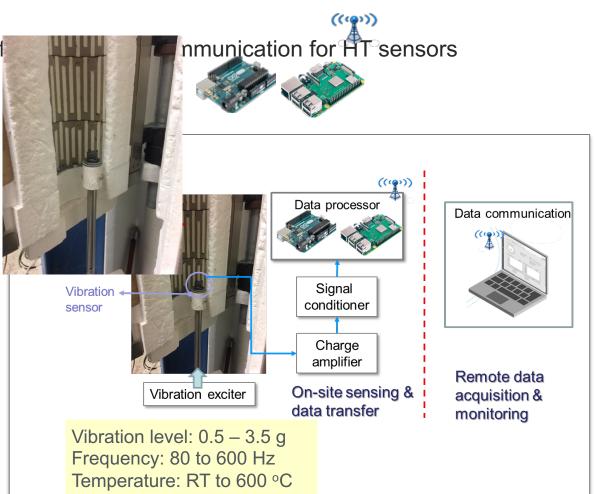
Over 30 dB gain using the liquid metallic PA transducer

More stable HT performance than CSNP composite

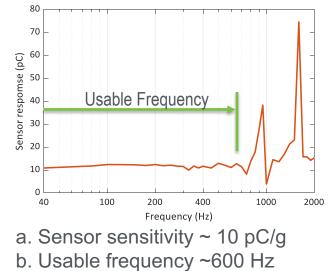
Clear wave packets detected at HT conditions

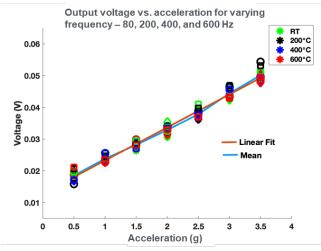

- A new modality utilizing liquid metallic material was investigated.
- Over 30 dB gain using the liquid metal PA transducer
- Ensured the temperature stability of the liquid metallic materials in PA energy conversion

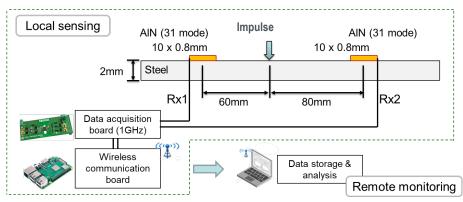

Accomplishment 3: Wireless Data Communication for HT Vibration Sensor (Task 2 & 3)


Purpose:

To investigate the feasibility of



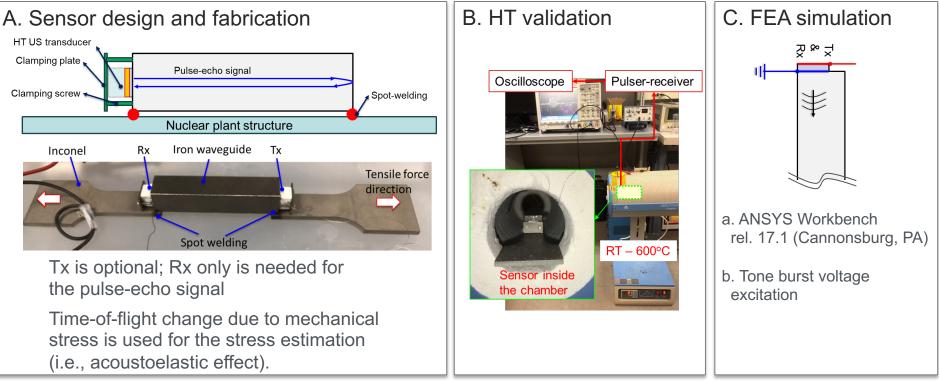




Conclusions:

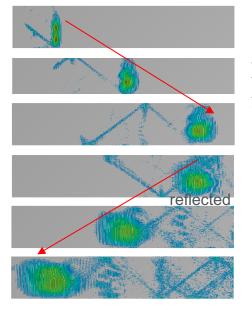
- Succeeded in transferring HT vibration sensor data to a remote place using the wireless communication system
- Developed a low temperature/frequency dependent vibration sensor
- Expand the data communication method to an HT acoustic emission sensor (in progress)

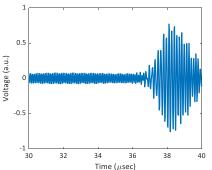
- a. Low temperature dependency
- b. Data (wireless) sensitivity about 7.9 mV/g



Schematic of wireless acoustic emission sensor

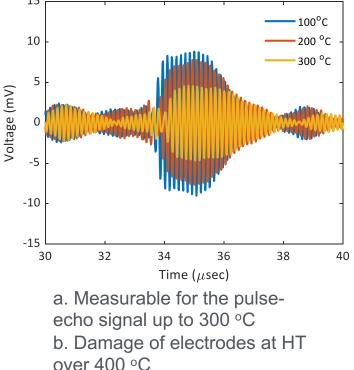
Accomplishment 4: Nonintrusive/Embedded HT Stress Sensor (Task 2 & 3)


Purpose:


• To investigate the feasibility of embedded HT sensing

Results:

Simulation results



a. Simulation of the pulse-echo signal using AIN transducer

b. Longitudinal wave with the single wave packet

HT pulse-echo test results

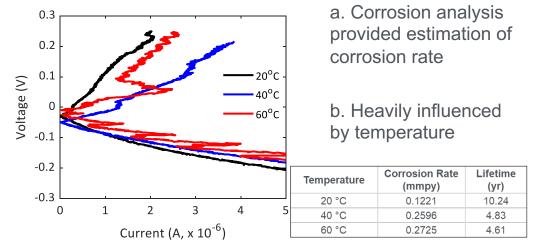
- Studying the HT insulating technique of electrode surfaces on the sensing material
- Ensuring the HT stability of the electrode, the HT stress sensor will be tested using a tensile machine.

Accomplishment 5: Corrosion resistance of HT sensors (Task 2)

Purpose:

• To investigate the corrosion resistance performance of HT sensors

Methods:



a. Corrosion effect on AIN using Cyclic Polarization Testing

b. Acidic solution of KNO_3 with a pH of 6.09

c. The corrosion response at various temperatures

Results:

- Corrosion rate of sensing material is highly dependent on temperature, and reduce the potential lifetime
- Needs to conduct the corrosion analysis after depositing an insulation layer (e.g., ZrO₂ or ZnO) over the sensor

Publications:

A. Journal papers (2)

- [1] H. Kim, S. Kerrigan, M. Bourham, and X. Jiang, "AIN Single Crystal Accelerometer for Nuclear Power Plants," *IEEE Transactions on Industrial Electronics*, In Press, 2020.
- [2] H. Kim, W. Y. Chang, T. Kim, and X. Jiang, "Stress Sensing Method via Laser-Generated Ultrasound Wave Using Candle Soot Nanoparticle Composite," *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, Vol. 67, No. 9, pp. 1867-1876, 2020.

B. Conference papers and presentations (1)

[1] H. Kim, B. Balagopal, S. Kerrigan, M. Y. Chow, M. Bourham, and X. Jiang, "Noninvasive liquid level sensing technique using laser generated ultrasound," *Proceedings of SPIE*, Online presentation, Vol. 11380, 1138003, 2020.

C. Newsletter (1)

[1] H. Kim, S. Kerrigan, B. Balagopal, M. Y. Chow, M. Bourham, and X. Jiang, "Noninvasive High Temperature Embedded/Integrated Sensors (HiTEIS) for Remote Monitoring of Nuclear Power Plants," *Update on NEET ASI Advanced Instrumentation Development Activities*, U.S. Department of Energy, No. 12, pp. 21-23, 2020.

D. Invention Disclosure (1)

[1] H. Kim and X. Jiang, "Liquid Metal Assisted Photoacoustic Transducer," 15 Oct 2020.

Awards:

A. Student competition

At the American Nuclear Society (ANS) 2nd annual Pitch your PhD Competition, Sean Kerrigan placed 2nd. Kerrigan's work is on "Development, Fabrication and Testing of Wireless Non-Intrusive AIN-based Piezoelectric Sensors".