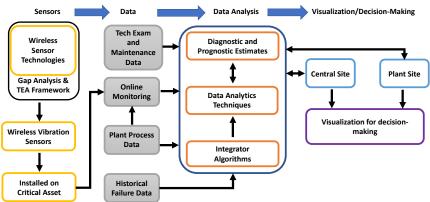


Analytics-at-Scale of Sensor Data for Digital Monitoring in Nuclear Plants

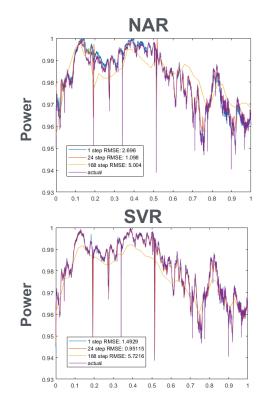

Advanced Sensors and Instrumentation Annual Webinar

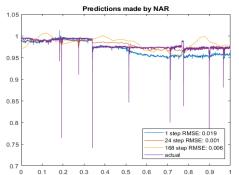
> October 29, November 5, November 12, 2020

Vivek Agarwal Idaho National Laboratory

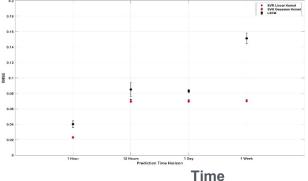
Project Overview

 Goal: Advance online monitoring and predictive maintenance in nuclear power plants to enhance plant performance (i.e., efficiency gain and economic competitiveness)

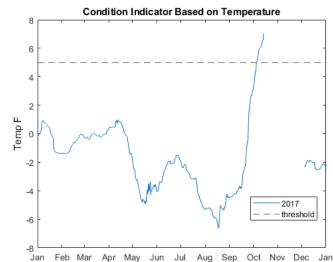

 Team: Vivek Agarwal (INL), Pradeep Ramuhalli (ORNL), Michael Taylor (EPRI), Charlotte Geiger and Scott Greenlee (Exelon). Others @ INL: Cody Walker, Koushik A. Manjunatha, Nancy Lybeck, Ahmad Al Rashdan, and Ronald L. Boring.


•	Schedule:	Year	Objective	Task	Responsibility
	This task will be completed in Year 3	1	Develop a generalized techno-economic analysis (TEA) of a wireless infrastructure	Multi-band heterogeneous wireless communication architecture	Vivek Agarwal and Koushik A. Manjunatha
		2	Develop diagnostic and prognostic models for identified balance of plant asset	Feedwater and Condensate System: BWR and PWR	All participants
		_		Diagnostic modeling and data integration	V. Agarwal, N. Lybeck, and C. Walker Pradeep Ramuhalli
				Prognostic modeling	Pradeep Ramuhalli, C. Walker, V. Agarwal, and N. Lybeck
		3	Development of visualization algorithms	User-centric visualization scheme for monitoring and diagnostic center	Ronald L. Boring
			Validation of developed models and TEA methodologies	Numerical validation using ns-3 simulator	Koushik A. Manjunatha and Vivek Agarwal
				Data driven validation of models	All participants

2


Accomplishments

- Condensate and Feedwater System
 - Feedwater pump, condensate pump, booster pumps, gross load
 - Plant process data and work order information from Exelon-owned BWR and PWR power plants were obtained
- Milestone: Development of Prognostic Models using Plant Asset Data
 - Development of three Prognostic Models: Nonlinear Autoregressive (NAR) neural network, Long Short-Term Memory (LSTM), and Support Vector Regression (SVR).
 - SVR outperformed both the LSTM and NAR models when predicting the reactor power, system flow, and temperature of individual components.
 - Results indicate multiple factors influence prediction accuracy, with performance optimization necessary during model development phase.



Accomplishments II

- Milestone: Wireless sensor modalities to collect vibration data
 - With inputs from Exelon, INL identified range of wireless vibration sensors that could be installed on condensate and feedwater system pumps and motors
 - Identified wireless vibration sensors could be integrated with the multi-band heterogeneous wireless architecture proposed by INL in Year 1
 - Petasense, Bently Nevada wireless vibration sensor and Bently Nevada proximity vibration probe
- Milestone: Fault diagnosis and data integration (delayed)
 - Maintenance logs were utilized to locate previous faults within the condensate and feedwater system.
 - Condition indicators based on temperature were created to predict when the component was operating in a degraded state.
 - INL is currently in development of a fault diagnostic clustering and integration of new signals.
- Publications:
 - Manjunatha et al., "ISM band Integrated Distributed Antenna Systems for Industry 4.0: A Techno-Economic Analysis." Presented at Virtual IEEE Global Communication, December 2020.
 - Manjunatha et al., "A Multi-Band Heterogeneous Wireless Network Architecture for Industrial Automation: A Techno-Economic Analysis," IEEE Trans. of Industrial Informatics (under review)
 - 2 additional journal papers in preparation.

Technology Impact

- Advances the state of the art for nuclear application
 - Advances online monitoring at a nuclear plant site for different plant assets
 - Provides machine learning approaches to integrate and analyze heterogeneous structured and unstructured data (i.e., analytics-at-scale)
 - Visualization of information to make informed decision-making
- Supports the DOE-NE research mission
 - Enable economical long-term operation of existing fleet of reactors
 - Research outcomes can be utilized to develop maintenance strategy for next generation of advanced reactors
- Impacts on the nuclear industry
 - Enable industry to transition from preventive maintenance strategy to predictive maintenance strategy
 - Enhance reliability and economic operation of domestic existing fleet
- Commercialization
 - Project team will develop a transition plan to enable transfer of research outcomes to an industrial partner

Conclusions

- Advanced machine learning and related data analysis methodologies enables
 - Utilizing heterogeneous data collected over different temporal and spatial resolutions to assess system state
 - Detect anomalies in equipment conditions
 - Develop prognostic models to assess future operational states
- Prognostics models were developed to predict process measurements over different time horizons
 - Prediction accuracy were evaluated for different learning models and architectures
 - Data exhibiting only steady-state conditions, i.e., without transient challenges, were used to date. Transient conditions are part of Year 3 activity along with validation of models.
- Different wireless vibration sensor modalities were identified
 - Wireless vibration sensors communication protocols can be easily integrated with the multi-band heterogeneous wireless communication architecture proposed by INL
- Diagnosis and data integration research
 - Focusing on understanding what additional sensor measurements could enhance diagnosis of motor and pump condition
- Questions
 - <u>vivek.agarwal@inl.gov</u>