

MEA Defects for QC in PEM Fuel Cell Manufacturing (NRC Internal Project)

Project Introduction and Key Defects Identification

Zhiqing (Ken) Shi, NRC-EME

ken.shi@nrc-cnrc.gc.ca

QC Workshop, NREL, May 5, 2021

Title: "MEA Defects for QC in PEM Fuel Cell Manufacturing"

Objectives: To define the key defects during MEA manufacturing and understand the effects of defects on PEM fuel cell performance and durability

Duration: January 2021 to December 2022 (Two years)

Scopes:

- 1. Identifying key defects for MEA and its sub-components
- 2. Defining methodologies to introduce designed defects
- 3. Conducting ex-situ characterizations and in-situ performance/durability testing
- 4. Discussing defects QC guideline with MEA component suppliers and fuel cell manufacturers

This project initiates research activities and build a foundation to leverage and collaborate with Canadian fuel cell companies and international organizations.

Project Team

Project manager: Dr. Ken Shi

Task 1. Membrane and catalyst layers (CLs), Dr. Nana Zhao, EME-Van

Task 2. Gas diffusion layer (GDL), Dr. Riny Yuan, EME-Van

Task 3. Catalyst ink, Dr. Régis Chenitz, AST-Boucherville

Primary collaborators:

- Prof. Erik Kjeang group at Simon Fraser University
- Ballard Power System

15+ Consultants for prioritizing defects,

- Fuel Cell Developers
- Component Suppliers
- Research Organizations

1. Listing all possible defects

Membrane: 21 Ink: 32 Catalyst layer: 26 GDL: 38

- **2.** Sending the lists of defects to the external consultants
- 3. Summary of feedback and narrow-down lists of defects
- 4. Discussing with USA and Germany partners in NREL QC workshop

5. Key defects identified at NRC (8-10 defects in total)

May 5th

1. Listing all possible defects, for each component

	Major category	Defects and explanations				In house (H) or	Property and Characterization				
		Source of defects	#	Name of defects	Explanations	from manufacturer (M)	Related properties	Characterizations	References	Priority (1-5)	Comments

2. Sending the lists of defects to the external consultants

Major	Defects and explanations					
category	Source of defects	#	Name of defects	Explanations	(1-5)	

3. Summary of feedback and narrow-down lists of defects

- Three fuel cell developers
- Five component suppliers
- Four research organizations

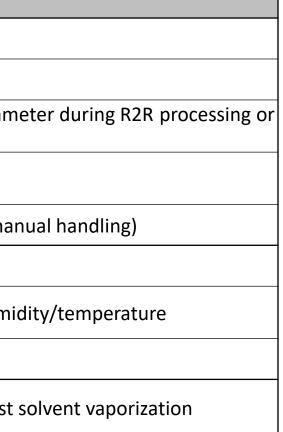
Comments

Identifying Key Defects: Membrane

Catalogue	#	Name of defects	Explanations
	1	Pin holes	Pin holes (size, depth, location, distribution etc.)
Irregularity	2	Air bubbles	Air bubbles formed during solvent evaporation
	3	Uneven thickness	Uneven membrane thickness
	4	Gel formation	Gels from ionomer dispersion
	5	Dust	Dust particles, human hair, skin scraps
Contamination	6	Metals/ions	Metal ions, especially Fe ²⁺ (ppm), metals debris and halogen imp
	7	Mechanical weakness	Weak mechanical performance results from higher/lower anneali
Processing conditions	8	Uneven reinforced layer	Uneven thickness, nonuniform pores and size, on membrane surf reinforcement material
	9	Stretching in different directions	Different swelling and tensile strength in X and Y directions due t in Roll-to-roll processing
Others	Others 10 Delamination damage		Backing sheet removal results in curling, scratches and tears of th

Yellow highlighted are key defects identified

he membrane


- to tensile forces variation
- rface, and folding of
- ling temperature
- purities (ppm)

Category	#	Name of defects	Explanations		
Catalyst	1	Active metal loading (Pt,)	Out-of-Specification regarding Metal loading(s)		
Catalyst	2	Nanoparticle agglomeration	Out-of-Specification regarding size dispersion and agglomeration		
	3	Inapropriate wt.% of ionomer in solution	Variability between batches will influence final amount in CL		
lonomer	4	Polymer agglomerates	Fish eyes can be formed in polymer dispersion		
	5	Decomposition	Shelf Life		
Solvent	6	Impurities in solvent	Out of range for solvent specification (incl, water) from handling or storage environment, shelf Life of solvent		
Slurry formulation	7	Variation in dispersion viscosity	Offset in weight of ionomer and solvents (precision)		
	8	Material settling	Settling time is usually a parameter dictated by formulation governed itself b performances and not necessary by coating process or storage time		
Slurry processing	9	Fast drying	During coating, fraction of slurry may be too dry or wasted => Redispertion Feasibility or dilution of dried or highly viscous slurry (process waste)		
Juliy processing	10	Metal contamination	Dust particles, Impurity ions from tools or solvent(s), environmental influenc		
	11	Nanoparticle or carbon support damage	Chemical reaction or mechanical forces (high shear mixing, ultrasounds, over mixing, etc) can change nanoparticles or carbon support		

nulation governed itself by FC

Category	#	Name of defects	Explanations
	1	Scratches	Scratches on catalyst layer
	2	Missing Catalyst Layer	Missing/empty catalyst layer, especially on cathode
Handling	3	Catalyst Layer Delamination	Catalyst layer delamination resulted from inappropriate roll core diam from inappropriate drying. E.g. excessive temperature
	4	lons (metal) Impurity Contamination	Catalyst layer contamination with ions
	5	Uneven Catalyst Layer Surface	Alteration of catalyst layer surface by surface shear forces (R2R or ma
	6	Uneven Catalyst Layer Thickness	Uneven catalyst layer thickness from coating process
Coating	7	Defects Caused by Uncontrolled Coating Environment	Mechanical stress and strain resulted from uncontrolled relative hum
	8	Substrate Folding	Folding of substrate before or during coating
Drying	9	Undesirable Pore Holes	Undesirable pore holes formation from inappropriate drying. E.g. fast

	Category	#	Name of defects	Explanations	
		1	Unevenness/variation of thickness		
		2	Unevenness/variation of		
		2	conductivity	These properties can be measured simultaneously using the 3-in-1	
	Substrate	3	Unevenness/variation of permeability		
	Substrate	4	High/low diffusivity	An optimal range needs to be defined	
		5	Surface holes/breaks/streaks/globs	Web holes/breaks/streaks/globs from manufacturing	
		6	Surface scratches/cracks/fractures	Surface scratches/cracks/fractures from handling	
		7	Out of range roughness	Surface roughness is out of range and the range needs to be defin	
		8	Uneven thickness	Variation in thickness	
		9	Missing MPL	Missing MPL sections	
	MPL	10	Scratches	Manually made scratches (square from 0.04-2 cm ²)	
		11	Out of range roughness	Surface roughness is out of range and the range needs to be defin	
		12	Uneven thickness	Change in this knows, resistivity and ID normaphility over time or e	
		13	Uneven conductivity	Change in thickness, resistivity and IP permeability over time or they can be measured simultaneously.	
		14	Uneven permeability		
		15	Holes	Manually made holes with different sizes, depths and densities	
	Substrate + MPL	16	Surface cuts	Surface cuts from 5-20 mm long of different oritations (0°, 45°, 90	
		17	Diffusivity variation	An optimal range needs to be defined	
		18	Cracks/fractures	Cracks/fractures from handling	
		19	Edge defects	Edge defects caused by cutting tools (e.g., die cut etc.).	

-1 device ined. ined. over several compression cycles, 90°)

4. Discussing with USA and Germany partners in NREL QC workshop

Component	Number of defects	Narrow-down defects	Key defects	Project
Membrane	21	10	6	2-3
Ink	32	9	6	2-3
CL	26	10	5	2-3
GDL	38	19	7	2-3

Feedback on the lists highly appreciated.

It would help the project to defined key investigating defects!

5. Key defects identified at NRC (8-10 defects in total)

Thank you!

ken.shi@nrc-cnrc.gc.ca

