

Development of book of attributes for PEM fuel cell components

Xiao-Zi (Riny) Yuan

QC workshop, NREL

May 5-6, 2021

NRC.CANADA.CA

National Research Conseil national de recherches Canada

Why book of attributes?

Results of the previous QC workshops to establish a complete book of attributes for main fuel cell components.

- ✓ Harmonize the language of QC for fuel cells.
- Describe specifications, definitions and standardizations for fuel cell components/sub-components.
- ✓ Identify critical parameters for components QC.
- ✓ Identify a number of areas that can be further improved
- ✓ Develop QC tools for fuel cell components/sub-components.
- ✓ Strengthen the international collaboration around QC.

What is book of attributes ?

A functional analysis by breaking down functions, attributes and properties for each components/subcomponents

Functions:

Roles the component needs to perform in a fuel cell stack operation

Attributes:

Qualities the component needs to have to perform its functions

Properties:

Experimentally measurable qualities that quantify the attributes

Main objectives

- Review and categorize the main attributes/properties that determine the functionalities of key fuel cell components.
- Identify existing test for each properties, including if it is a standard test, destructive or not and where the capability to measure such property resides.
- Prioritize each properties for QC.

Main components of the compendium

- Main components include BP, GDL, CCM and gasket.
- The CCM book includes membrane, CL, ink and CCM as a whole
- Gasket/sub-gasket was included to make a full spectrum of fuel cell components

Matrix of book of attributes

6

Final book of attributes for GDLs

2					Measurement					
3	Function	Attribute	Property	Note on why or why not the property is downselected	Method	Tool or equipment	Venue	Existing or under development	Destructive or not	Priority for QC
4			Tensile strength (N/m ²)	The MEA processes do not seem to change tensile strength. It is	Stretching test (ISO 1798, ASTM D3574-E)					
5		Processibility	Tear strength (N/m)	suggested as an inbound material parameter (need to develop a lower specification limit)	Tear strength test (ISO 8067, ASTM D3574-F)	Universal mechanical tester (e.g., Instron, Zwick/Roell, 3R Company)	NRC-Vancouver; ElringKlinger; Freudenberg PM;			
6					Flexural test/3 point bending test (ISO 178, ASTM D790)		ZSW	E	D	Medium: Devices and standards available
7			Bending stiffness (N/m)	Suggested as an inbound material parameter (need to develop a window)	Taber bending test (ASTM D5650, D5342 and ISO 2493)	Taber stiffness tester	ZSW			
8		Pressure distribution			Cantilever bending test (ASTM D 5732, DIN 53362)	Cantilever tester (e.g., TG-79-12 Cantilever Fabric Stiffness Tester)	Freudenberg PM			
9			Shear Modulus/strength (Pa) [1]	It is believed to be linked to GDL/CCM contact pressure distribution at mid-channels. During compression, the GDL has to withstand a shear load in some areas due to flowfield geometry.	Shear strength test (ASTM D1002)	Shear tester or universal mechanical tester	Freudenberg PM	E	D	Low: Not clear if this is an importan property
10	Mechanical support		Compression properties	Can be coupled with thickness measurement	Compression load vs. thickness	TUC tester	NRC-Vancouver; ElringKlinger NRC-Vancouver;	E	D	High: Simple and fast for QC
11						Pneumatic clamps with pressure control	ElringKlinger; Freudenberg PM			
12		Compressibility		SEM is not quantitative and not feasible for onsite test	Surface morphology	SEM	NRC-Vancouver; Frauhofer ISE; ElringKlinger; CEA	E	D	Low: Device available, measurement standard not necessary as every company uses different compression
13				Penetration in flow field (μ m)	μ-CT at different pressures	μ-CT	ZSW			procedures and therefore measures different compressibilities
14				Compression variations in fuel cell stacks will lead to plastic GDL deformations and loss of	Change in thickness over time or over several compression cycles	TUC tester	NRC-Vancouver; ElringKlinger; Freudenberg PM	E	D	
15			Compression set	Compression curve: Compression rate vs. stress strain coupled with ICR vs. stress strain gives information on compression rate in stack to ensure a low contact	Compression set test (cylindrical disc samples)	Universal mechanical tester	CEA	E	D	High: A good indicator for thickness loss over time.

Final book of attributes for GDLs - cont'd

3	Function	Attribute	Property	Note on why or why not the property is downselected	Method	Measurement Tool or equipment		Venue	Existing or under development	Destructive or not	Priority for QC
73		Heat capacity Specific heat capacity (J/g·K) Heat capacity Specific heat capacity (J/g·K) Heat capacity Specific heat capacity (J/g·K) Heat capacity Specific heat capacity (J/g·K) Specific heat capacity (J/g·K) Specific heat capacity (J/g·K) Specific heat capacity (J/g·K) Specific heat capacity is an important, temperature-dependent material property and can be conveniently and reliably measured by DSC.		DSC (ISO 11357-4)	DSC		ElringKlinger	E	D	Low	
74			Surface defects (number/size)	Optical inspection is an easy and fast way to inspect surface quality.	Optical inspection	Optical inspection system Mahr Surf profiler; Perthometer		-	E	D	High: Easy and fast
75			Surface properties MPL roughness (Ra, Rz)	Increased MPL roughness can lead to mechanical stress of the membrane and therefore to reduced cell durability. Therefore this parameter is considered very important. Different methods can be used to assess this property.	Line roughness measurement (ISO 4287.4288)			Freudenberg PM	E	D	Low: Complex and time consuming for real QC.
76		Surface properties			3D surface roughness measurement	Surface roughness profiler (WYKO) [8]		NRC-Vancouver	E	D	
77					Break-down voltage	Customized	Pressure applied; voltage+current increased until breakthrough Pressure applied; voltage	ElringKlinger	E	D	Low: MPL surface properties are important factors, however, not suitable for QC
78	Compatibility				measurement	equipment: foil between two GDLs	increased and current monitored				
79	with other components				Probability of electric shortcut		Pressure and current applied; resistance measured and evaluated statistically				
80		Dimensioning properties	Areal size (cm ²)	Proper thickness (also under compression) and areal dimensions are fundamental to make the GDL compatible with a given gasket and cell design.	Length measurements	Optical area measurement		DLR-TT and everywhere	E	N	Low: Areal size is not that important, because GDL is mostly sold and bought as roll good.
81			Metal impurities (ppm)	Contaminants may leach out and	-	ICP-OES (DIN EN 11885) e.g., Agilent 5110		ZSW	E	D	
82		Contaminations	Halogen impurities (ppm)	trigger unwanted chemical processes	techniques	Ion Chromatography (DIN EN ISO 10304- 1) (e.g. ThermoFisher Scientific)		-	E	D	Low. Devices and standards available

Check for updates

A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components

Xiao-Zi Yuan^{a,*}, Christine Nayoze-Coynel^b, Nima Shaigan^a, David Fisher^c, Nana Zhao^a, Nada Zamel^d, Pawel Gazdzicki^e, Michael Ulsh^f, Kaspar Andreas Friedrich^e, Francois Girard^a, Ulf Groos^d

* National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC, V6T 1W5, Canada

^b CEA Grenoble, DRT / LITEN / DEHT / STP / LCP, 17 Rue des Martyrs, 38 054, Grenoble, Cedex 9, France

⁶ ElringKlinger AG, Max-Eyth-Straße 2, D-72581, Dettingen, Erms, Germany

^d Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110, Freiburg, Germany

⁶ Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany ⁶ National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, 80401, USA

HIGHLIGHTS

- Compendia or books of attributes are established for key PEM fuel cell components.
- The books of component attributes include GDL, CCM, BP and gasket/subgasket.
- Functions and attributes/properties of each component are identified and categorized.
- Methods/devices existing or under development to measure the properties are listed.
- Identified properties of each component/sub-component are prioritized for QC.

GRAPHICAL ABSTRACT

Publication

Contributors:

• NRC

- NRC
- CEA
- ElringKlinger AG
- Frauhofer ISE
- DLR
- NREL

book of attributes with high QC priority

	Function	Michanical support	Water transport	Gas transport	Electrical conduction	Heat transport	Compatibility with other components
GDL	Property	Compression Compression set	Thickness Water vapor diffusivity	MPL porosity Gas permeability (TP & IP)	TP and IP Conductivity	Thermal conductivity (under compression) Thermal diffusivity (TP)	Surafce defects (number/size)
Membrane	Function	Transfer protons from anode to cathode	Maintain electrical isolation/physical inertness	Minimize fuel, oxidant and nitrogen crossover	Maintain chemical & electrochemical inertness		
	Property	Proton conductivity (IP & TP)	Thickness	Hydrogen crossover	Chemical durability		
	Function	Transfer protons from membrane/ CL to CL	Transfer reactant gases to catalyst surface	Transfer and distribute water	Provide electronic current passage between reaction sites and current collectors	Provide reaction sites for ORR and HOR with three-phase boundaries	
CL	Property	Proton conductivity Thickness	lonomer coverage O2 diffusion resistance	Water uptake/hydration Hydrophilic vs hydrophobic pore volume	Contact resistance IP & TP electronic conductivity	Pt utilization Pt loading and uniformity Pt (Pt/C) agglomerates size and distribution	
	Function	Reactant /product distribution and removal	Separation	Chemical stability			
вр (Property	Dimensional accuracy (Material thickness, plate thickness and channel shaper/landing radium)	Gas and liquid (fluid) impermeability (Pressure drop)	Corrosion resistance (peak active current, passive current density)			
Caskat	Function	Electrical insulation & Prevention of gas mixing	Thermal tolerance	Mechanical strength	CCM	Transfer and distribute MD/TD forces	Maintain electrical isolation & gas tightness
Gasket	Property	Gas peration (visual inspection, thickness, and gas permeability)	Thermal stability (Glass transition temperature)	Compressibility Compression set	CCM	Tensile strngth Burst strength CL adhesion on membrane	Thickness CCM integrity
Sub-gasket	Function	Electrical insulation & prevention of gas mixing	Mechanical strength	Chemical stability	Catalyst ink	Provide ink with uniformity, stability, and processability	
Jub-gasket	Property	Gas tightness	Compressibility	Chemical aging stability (long term & short term)	Catalyst link	Viscosity Ink composition	

Concluding remarks

- Accomplished through a close collaboration between national labs across the world, QC participants and fuel cell industries.
- Contributed to the component specification and standardization of fuel cells, in particular, to the QC during its manufacturing, processing, and assembling.
- Through review of the book of attributes for different components:
 - Identify critical parameters for components QC and areas that can be further improved and future projects via collaboration
 - Develop QC tools for fuel cell components/sub-components
- Book of attributes for different components will be kept as live documents and updated as the technology advances.

Acknowledgments

- This work is financially supported by the Vehicle Propulsion Technologies (VPT) Program of NRC.
- □ International collaboration (5 countries, 17 organizations, 70 participants)
- □ Internal NRC members:
- Nima Shaigan
- Zhiqing Shi; Nana Zhao
- Régis Chenitz; Asmae Mokrini
- Zhong Xie; Chaojie Song; Lei Zhang
- DaTong Song; Qianpu Wang

Acknowledgments

□ Special thank goes to:

- Frauhofer ISE (Nada Zamel, Patrick Schneider, Sebastion Prass, Ulf Groos)
- CEA (Christine Nayoze, Jean-François Blachot, Frédéric Fouda-Onana, Laure Guetaz, Marie Heitzmann, Pierre-André Jacques, Arnaud Morin, Joel Pauchet, Jean-PhilippePoirot-Crouvezier, Philippe Clement, Laurent Antoni)
- *ElringKlinger AG* (David Fisher, Michael Götz, Alexander Höflich, Martin Quintus, Michael Paul)
- Ballard (Monica Dutta, Shanna Knights, Darcy McGowan, Erin Rogers, Julie Bellerive, Alan Young, Esmaeil Alvar, Mike Lauritzen, Derek Cheng, Madhu Saha)
- Unilia Fuel Cells Canada (Carmen Chuy, Sharon Wong)
- DLR (Pawel Gazdzicki, Mathias Schulze, Andreas Friedrich, Indro Biswas)
- NREL (Michael Ulsh, Peter Rupnowski)
- HySA Catalysis (Darija Susac, Sharon Blair)
- ZSW (Ludwig Jörissen, Paritosh Mohanta, Florian Wilhelm, Sylvain Brimaud)
- MBFC (Taryn Biggs)
- Freudenberg PM (Achim Bock, Volker Banhardt)
- AVL Fuel Cell Canada (Stephen Lee)
- AUDI (Robert Schlumberger, Christian Wachtel)
- Toray (Kazuyo Shigeta, Naoki Kobayashi)
- BOSCH (Siegmund Zweigart)

THANK YOU

Riny Yuan • Research Officer • xiao-zi.yuan@nrc-cnrc.gc.ca

National Research Conseil national de Council Canada recherches Canada