

Mike Yandrasits, Dan Meehan, Dan Pierpont

US DOE, NRC Canada & Fraunhofer ISE Fuel Cell/Electrolyzer Quality Control Workshop (virtual)

5/6/21

Outline

- What's the Goal?
- The early days Dryer lint experiment
- Manual inspection Representative images
- Automated Inspection- What does it mean?
- So, you see something now what? Accelerated durability testing
- What's the conclusion?

3M Fuel Cell Focus

2016 - Present

~2000 - 2018

Fiber Support or Reinforcement

Nanofiber support

3M

ePTFE support

What's the Goal?

To identify defects* and eliminate those that result in premature cell failure

*observation, foreign material, anomaly, feature, etc.

 $\begin{array}{ll} \mathsf{P}_{detection} &= defect \ is \ detected \\ \mathsf{P}_{failure} &= defect \ results \ in \ premature \ failure \\ \mathsf{N}_{detection} &= defect \ is \ not \ detected \\ \mathsf{N}_{failure} &= defect \ does \ not \ result \ in \ premature \ failure \end{array}$

P= Positive, N= Negative

Apply Baye's Theorem?

 $P(P_f|N_d) = \frac{P(P_f|P_d) \cdot (P_d)}{P(P_f)}$

Check my math!

 $P(P_f | N_d)$ = prob. failure given no detection $P(P_f | P_d)$ = prob. of failure given detection $P(P_d)$ = prob. detection $P(P_f)$ = prob. of failure

The Early Days 2002

- Garment fibers observed in or on membrane surface
- Membrane deliberately contaminated with dryer lint (mixed into ionomer dispersion)
- Fiber debris Odd cells
- Control Even cells

10 cell accelerated durability station (load cycle protocol)

SHIVA Test Results W12 : Voltage vs. Time

Shiva 1 Debris Study

Two Sample T-Test

Null hypothesis		$H_0: \mu_1 - \mu_2 = 0$			
Alternative hypot	hesis	H₁: μ₁ - μ₂ ≠ 0			
/ .					
I-Value	DF	P-Value			
0.72	5	0.504			
P > 0.05 therefore null					

hypothesis accepted

Manual Inspection

Membrane divided into 1-foot sections

Deliverable 2: Debris After S6 Run

8

Representative Debris

200.00µm

Automated Inspection 2012

Initial inspection

- 20 m of good-looking membrane
- No constraints on detection

 14,000 detections.
- With size, and roundness constraints
 - ~1,000 (~500 per camera)
- Ran same roll tested 3 times:
 - Run 1- Most sensitive 26.6'
 - Run 2- Least sensitive 27.4'
 - Run 3- Moderate sensitivity 27.1'

Run 1

Observations sorted into different buckets:

Legend* ● Fibers ● Hash/Small Fibers ▲ Dark spots

Run 1- Sensitive Width and Length Settings

^{• 271} defects in 26.6ft

Typical Detection Images

Run 1 – Most sensitive settings

More Images

Dark spots suspected to originate from electrospun nanofiber support

Run 1 – Most sensitive settings

Image List - All Defects						
Reclassify Defect – Delete Defect QuickTeach						
,	-					
Num 259	Num 260	Num 261	Num 262			
DW Pos 23.6 ft	DW Pos 23.8 ft	DW Pos 23.8 ft	DW Pos 24.0 ft			
Num 263 Class Catch All DW Pos 25.6 ft	Num 264 Class Catch All DW Pos 25.9 ft	Num 265 Class Catch All DW Pos 26.1 ft	Num 266 Class Catch All DW Pos 26.2 ft			
Num 267 Class Catch All DW Pos 26.3 ft	Num 268 Class Catch All DW Pos 26.4 ft	Num 269 Class Catch All DW Pos 26.5 ft	Num 270 Class Catch All DW Pos 26.6 ft			

Some Perspective

Threshold Settings

Defect #120, Run 1

Pink is what software classified as "Defect"Did not pick up all parts of defect

Defect Image Viewer	Defect Image Viewer
0 115 Set 255 → Bright Pixel Adjust → Dark Pixel Adjust	0 115 Set 255 O Bright Pixel Adjust Detect threshold O Dark Pixel Adjust
	0 4.021 8.043 mm 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td

Threshold Settings

Run 1: Defect #145

- Fiber might be classified differently based on threshold setting
- Brightness threshold of 116 seems reasonable in this case

Threshold Settings

Run 1: Defect #215 Another example

• Brightness threshold of 115 may not accurately capture this defect

Detection Threshold – too much of a good thing

Run 1: Defect #129

Run 2

Least sensitive settings

Run 2-Increased width and length criteria

9 defects in 27.4ft

Typical Detection Images

Run 2 – Least sensitive settings

Image List - All Defects	- Image List	All Defecte					
Reclassify Defect Defect	Reclassify Defect Defect GuickTeach						
1		~	2				
Num 2 Class Catch All DW Pos 7.1 ft	Num 3 Class Catch All DW Pos 8.5 ft	Num 4 Class Catch All DW Pos 8.8 ft	Num 5 Class Catch All DW Pos 16.0 ft				
Num 6 Class Catch All DW Pos 18.0 ft	Num 7 Class Catch All DW Pos 21.5 ft	Num 8 Class Catch All DW Pos 23.7 ft					

Run 3

Moderate sensitivity settings

Run 3- Length and width criteria between Run 1 and Run 2

• 103 defects in 27.1ft

Typical Defect Images

Run 3 – Moderate sensitivity settings

"Clean" vs. "Dirty" coating environment

75 foot Membrane Run (~25 minutes)

- Beginning of the run was under "Dirty" Conditions.
 - Operators in the area working, doors open, moving around.
- Throughout the run, cleanliness measures were put in place.
 - Coating enclosure closed
 - \circ Operators left the area
 - lon bar neutralizing peeled substrate, etc.

29 Defects Total 73 ft analyzed

So, we see something, now what?

- Automated inspection equipment will find something
- "Generous" set points still yield one defect every 3 feet or less
- Rejecting all defects is functionally impossible

Test Plan

Accelerated Durability Testing followed by postmortem analysis

1) Locate know debris prior to fabricating CCM

2) Run in accelerated (OCV) test

3) Identify Failure locations at EOL

MEAs:

- Anode: 0.05 Pt/C
- Cathode: 0.25 PtCo/C
- Membrane: 14-micron 3M 800EW
 - nanofiber
 - peroxide scavenging additives

Postmortem – Control membranes

Control FC029877 OCV lifetime =1303 hrs FRR= 3.44 µmg/cm²/day

Control FC029878 OCV lifetime =1192 hrs FRR= 3.29 µmg/cm²/day

Control FC029879 OCV lifetime =1482 hrs FRR= 1.10 µmg/cm²/day

27

Postmortem – Debris membranes

Membrane Defects FC029163 OCV lifetime = 2336 hrs FRR= 0.94 μmg/cm²/day

No obvious relationship

Membrane Defects FC029165 OCV lifetime = 1062 hrs FRR= n/a

No obvious relationship

Postmortem – Debris membranes

Known debris OCV testing

All Cells

Known debris OCV testing

OCV Lifetime and Fluoride Release Rate (FRR) Two Sample T-Test

Null hypothesis $H_0: \mu_1 - \mu_2 = 0$ Alternative hypothesis $H_1: \mu_1 - \mu_2 \neq 0$

OCV Lifetimes

 $H_0: \mu_1 - \mu_2 = 0$ Null hypothesis Alternative hypothesis $H_1: \mu_1 - \mu_2 \neq 0$

OCV F⁻ Release Rate

Membrane

Debris

What we didn't talk about

- Electrode defects
- Casting liner will have scratches, debris, defects, etc.
- Support material (nanofiber or ePTFE) will have defects and irregularities.
- Repeating defects can often be traced to the circumference of a process roll.
- Camera placement (on angle, off angle, reflection, transmission)
- Line speed
- Data management
- Reject strategy (Mark? Skip? Defect per meter threshold?)
- 100% inspection vs. sampling plan
- Inspection location (Membrane production or CCM or MEA converting)
- Operating conditions and the impact on failure mode.
- Electrolyzers and other applications

What's the Conclusion?

- 1. Inspection is hard. A super small pixel size is 20 um which is still 2X the membrane thickness.
- 2. If you look, you will see something.
- 3. Equipment parameters (off-angle or on-angle camera location, light angle, etc.) matter.
- 4. Data analysis parameters matter (threshold settings)
- 5. Liner, support, and membrane coating all bring their own optical features to the party.
- 6. "Zero defects" is irrational (see item 2 above).
- 7. At first glance, many defects appear to have no immediate effect in simple accelerated testing.
- 8. Accelerated durability testing may not provide the full answer.
- 9. Reducing debris (garment fibers, gels, etc.) should be done anyway.
- 10. Best way to manage all these issues for reliable, high volume manufacturing is not clear.

What would Mike do with unlimited time and money?

- 1. Expand accelerated and non-accelerated testing with known or exaggerated defects.
 - a) RH Cycle
 - b) Soft shorts¹
 - c) Highly Accelerated Stress Test (HAST)^{2,3} or other analysis of chemical and mechanical stressors⁴
- 2. Hire a statistician/quality engineer
- 3. Explore machine learning to analyze mountain of inspection and testing data.
- 4. Learn from experts in other fields that have wrestled with similar issues (optics, Si wafers, battery, etc.)
- 5. Get comfortable with the idea that most observations might be benign.

¹ Mittelsteadt and Liu, Handbook of Fuel Cells, Wiley, 15 December 2010

² Lai and Fry, *J. Power Sources* 274 (15) January 2015, 1162-1172

³ Lai et. al. J. .Electrochem. Soc., 165 (6) F3217-F3229 (2018)

⁴ Singh et. al., *J. Electrochem.* Soc., 164 (13) F1331-F1341 (2017)

Thank you