

Integrated Multi-Fidelity Model and Co-Simulation Platform for <u>Distribution System Transient and Dynamic Analysis</u> —*DistribuDyn*

Wei Du

Senior Research Engineer
Pacific Northwest National Laboratory (PNNL)

Project Team: PNNL, ORNL, GE Research, ComEd, Temple University

Outline

- Background & Motivation
- PNNL's Existing Work on Inverter Modeling for Microgrid Simulation
- DistribuDyn Project Overview
 - Technical Thrusts
 - End of Project Goals

Background & Motivation

- The power system is experiencing a major transition with increasing distributed, inverter-based resources (IBRs) and variable loads (VLs) connected at the distribution level.
- Today's power system simulation tools separate transmission (T) and distribution (D) systems, which is not suitable for future highly-interactive T&D power systems..
- Prior efforts have developed different models and tools to address this issue. However, there is still a lack of models and simulation platforms to accurately simulate the *transients and dynamics of full-size distribution systems* that feature high penetration of IBRs and VLs.
- The *DistribuDyn* project will develop multi-fidelity models of IBRs and VLs and an integrated co-simulation platform to accurately simulate the transient and dynamic behaviors of distribution systems and their interactions with transmission systems.

How should we simulate the transient and dynamic behaviors of full-size distribution systems populated with many IBRs and VLs, and their interactions with transmission systems?

A modified IEEE 8500-Node Test Feeder with High Penetration of IBRs and VLs

PNNL's Existing Work on Inverter Modeling for Microgrid Simulation

The inverter modeling work for microgrid simulation is funded by the Microgrid R&D program, which is funded by the U.S. Department of Energy's (DOE) Office of Electricity (OE). The Microgrid R&D Program is managed by Mr. Dan Ton.

PNNL's Existing Work on Inverter Modeling for Microgrid Simulation

- PNNL has developed three-phase, phasor models of grid-forming and grid-following inverters, and integrate them in the open-source, distribution system simulation tool—GridLAB-D [1] for dynamic simulation of microgrids.
- The models has been simulated for a full-size, medium-voltage microgrid with 5,252 nodes [2].
- The simulation work of microgrids can support the study of the transients and dynamics of large-scale distribution systems with high penetration of IBRs and VLs.

Substation
Generator: 3 × 2 MW
Inverter: 10 × 0.5 MW

2

3

10

3

10

An islanded 5,252-node microgrid

Case A	
Simulation Time	15 s
Time Step	5 ms
Computation Time	~13 mins

Event: Loss of one synchronous generator

Per-phase phasor modeling

^[1] http://gridlab-d.shoutwiki.com/wiki/Main_Page

^[2] W. Du, F. K. Tuffner, K. P. Schneider, R. H. Lasseter, *et al.*, "Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems". IEEE Transactions on Power Delivery, 2020.

Integrated Multi-Fidelity Model and Co-Simulation Platform for Distribution System Transient and Dynamic Analysis —DistribuDyn

Project Team: PNNL, ORNL, GE Research, ComEd, Temple University

Project Overview

- Develop multi-fidelity IBR and VL models and an integrated co-simulation platform to accurately simulate
 the transients and dynamics of distribution systems and their interactions with transmission systems
 - Utilize white-, black-, and gray-box modeling approaches to model utility-scale and BTM IBRs and VLs
 - Leverage and expand open-source tools (i.e., *GridLAB-D*, *HELICS*, and *GridPACK*) for various types of co-simulation
 - Validate and calibrate the models based on μPMU and point-on-wave data from real-world feeders

Overview of technical solutions and team composition

Thrusts 1: Physics-Based and Data-Driven Modeling of IBRs and VLs

White-Box Modeling

- High-resolution EMT and phasor models for utility-scale IBRs (large distribution-connected IBRs)
- Various control strategies (e.g., grid-forming and grid-following controls) and inverter built-in protection
- Focus on large-signal transient behaviors (e.g., various fault responses of IBRs)

Black-Box Modeling

- Data driven approach to model vendor-specific IBRs ideally only using the nameplate information
- Nonlinear autoregressive exogeneous (NARX) and/or Hammerstein-Wiener (HW) approaches to model IBR nonlinear transients

Gray-Box Modeling

- Aggregate the residential and commercial BTM IBRs and VLs behind a service transformer
- Single-/three-phase BTM IBRs and representative building loads (e.g., direct-connected and inverter-driven motors with various mechanical torque characteristics and protection)

Thrusts 2: Integrated Co-Simulation Platform Development

EMT and Three-Phase Phasor Co-Simulation

- Expand Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS^[1]) platform to interconnect PSCAD and GridLAB-D to realize EMT & phasor co-simulation for distribution systems
- Allow real-code PSCAD EMT models of IBRs to be directly connected to utilities' full-size feeder models

Large-Scale T&D Co-Simulation

- Expand HELICS to interconnect GridPACK and GridLAB-D to realize large-scale T&D co-simulation
- Leverage parallel computing to address the scalability issue

EMT and three-phase phasor co-simulation to study the transients and dynamics of distribution systems

Large-Scale T&D Co-Simulation to study the T&D interaction

[1] https://helics.org/

Thrusts 3: Model Validation and Calibration

- Data Collection, Model Validation and Calibration
 - High-resolution μPMU and point-on-wave data from the ComEd feeder
 - Extensive laboratory HIL and hardware testing of utility-scale/BTM IBRs, and direct-connect and inverter-driven motors
 - IBR models, VL models, and feeder models will be validated against field data

Thrusts 4: Contingency Analysis Using the Developed Co-Simulation Platform

- Contingency Analysis of Distribution Systems
 - Switching, balanced and unbalanced faults, reclosing, etc.
- Contingency Analysis of T&D Systems
 - Delayed-clearing faults, loss of generation units, etc.

End of Project Goals

Model Accuracy	<i>Individual Component</i> : For the developed white-, black-, and gray-box models, the normalized root mean squared error (NRMSE) of individual IBR/VL output between simulation and field measurements/hardware testing should be less than 2% with a confidence level higher than 95%.
	Distribution Feeder : For the ComEd feeder model, the voltage and frequency NRMSE of the nodes equipped with μ PMUs between simulation and field measurements should be less than 5% with a confidence level higher than 90%.
Scalability	<i>Distribution System Simulation</i> : Achieve transient and dynamic simulation of a modified IEEE 8500-node test feeder with above 75% penetration of IBRs on a personal computer. The feeder should have at least 100 phasor IBR models (residential/commercial) and 5 EMT IBR models (utility-scale).
	T&D Co-Simulation : Achieve large-scale T&D co-simulation with the full-size WECC system and 100 detailed distribution feeders on a supercomputer leveraging parallel computing.

Thank you

Wei Du
Wei.du@pnnl.gov

