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Project Introduction OHAR ENERGY

(a) Traditional Framework (b) Proposed Framework (SAPPHIRE)
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The proposed solution can simultaneously ensure system stability at the transmission
system level, optimize the provision of multiple services, and realize GFM operation of
individual HPPs in coordination with PVs and BESS at the plant level.
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Project Approach Wi ssessrns
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Task 1 Task 2&4 Task 3 Task 5 Task 6

System-level Real-time monitoring Plant/device level PHIL validation Field demonstration
scheduling & modeling Stability analysis & control

HPP Modeling Real-time inertia |« Stability issues related *  Grid services Grid services

FFR quantification estimation |  toGrid-forming provision Probing-based inertia
from IBRs Frequency L _control * GFM operation estimation using HPP
Stability-constrained measurement - “Advanced control of * inertia estimation 100% Renewable
scheduling HPP operational data HPP using HPP operation with HPP

AC-OPF formulation

analysis

Optimal control of PV
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Fundamental Questions
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/ Bulk Power System N /" Inverter-based Resources
Bus #3 Inverter
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* What are the fundamental dynamic stability impact and characteristics when the IBR penetration
level increases in a large-scale bulk grid?

*  Will IBRs introduce any new system-level stability issue?
* How do they interact with the rest of SGs?
*  What are the critical/key parameters for the new stability issues, if there is any?

* How do we determine the generation mix of GFL and GFM to mitigate stability issues for a
given grid?

Lack of the theoretical analysis to understand the reason behind it!
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Approach for Small Signal Stability moisas oy

Transmission System Representation : :
* Four dimensions
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Control Technology Comparison W i cisees s
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New interactive mode between GFM and Grid
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Participation Factor
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The new coupling oscillation mode between SG and
GFM (Mode 8) has the dominant impact on stability
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L. Ding, X. Lu, J. Tan,” Comparative Small-Signal Stability Analysis of Grid-Forming and Grid-
Following Inverters in Low-Inertia Power Systems” accepted by IEEE IECON 2021
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Towards 100% Penetration of IBRs
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{4@*3‘”]7'—:'”“‘—'—@ 100% GFL is different from 100% GFM

GFL T o * Transient stability
Inverter (1) GFL Inverter + SC Preliminary data shows
In o with the same small signal stability
T_" margin, the transient stability margins
GFM T o for different inverters are different.
Inverter (2) GFM Inverter +SC o GFM may improve transient stability
margin, comparing to GFL.
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L. Ding, X. Lu, J. Tan, “Small-Signal Stability of Low-Inertia Power Grids with Inverter-
Based Resources and Synchronous Condensers” accepted by ISGT 2022



Summary s
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All the control technologies are sensitive to grid strength. Compared to GFL with or w/o droop,
GFM has the largest stability margin, but it still can have small-signal instability when we
further push the envelop of the grid strength.

Both GFL and GFM can achieve 100% renewable under some specific hypothesis in terms of
small signal stability.

Modal analysis reveals that unlike the GFL that a PLL-related medium-frequency oscillation
mode could become the troublemaker for grid stability, the GFM can introduce a low-
frequency oscillation mode that shows a strong interaction between the SGs, network and
inverter controls.

Compared to GFL with and w/o droop, GFM has the largest small signal stability margin, but it
still can have small-signal instability when we further reduce the grid strength.

When GFM is located at/near load center and SG is far away, it is easier to achieve 100%
renewable than relatively high renewable. The instability is mainly caused by the new coupling
oscillation modes that are introduced by GFM.
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Project Introduction
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Hierarchical Control Framework: SAPPHIRE

System-level control

System operator Stability-constrained AC OPF
- Minimize production cost
- - Ensure adequacy of stability resources
——
(ng??:;ftri'::ttc)T 1 Control signal
Hybrid PV plants Coordinated optimal control
Battery PV - Fulfill system-level requirements
- Operate in grid-forming mode
Coordination - Provide multiple stability services
- Extend battery lifetime

Plant/Device-level control

Field Demonstration in Hawaii Grids

- Provide stability services
- Use HPP for inertia estimation
- 100% renewable operation

* Demo 2
2By Maui island
® 60 MW solar +
240 MWh battery

HPP, AES

Demo 1
Kauai island

é

28 MW solar + 100 MWh BESS peaker plant
HPP, AES Corporation 2019

To improve the performance of HPPs in supporting the stability of grid operations:
= Unlock the capability of HPPs to provide essential stability services

= Bridge the gaps between system-level and plant-/device-level control of HPPs

= Help the power industry achieve high renewable grids by demonstrating the use of
HPPs as the backbone of extremely high inverter-based resource(IBR) grids
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Timescales of SAPPHIRE
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System size

Electromagnetic Electromechanical

transient dynamics

Steady-state

Power Flow

Load Frequency
Control (AGC)

Frequency Stability and
Governor Control

Transient Stability

SAPPHIRE I: System-level control
SAPPHIRE II: Device-level control

Inverter-based Control

I |

SAPPHIRE IlI: PHIL testing and validation
- Continual interaction
— » : Conditional interaction

I I I I » Time Scale

Commercial
software

In-house tool

Proposed
control
framework

107s 0.1s

10s min hour day

PSCAD PSSE, PSLF PLEXOS

SAPPHIRE Il S22 SAPPHIRE |
SAPPHIRE Il
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System level

* Lack of a unified framework and systematic
method to consider the fast response capability
of HPPs for grid stabilization

Plant level

* GFM control of HPP is not mature
* Sub-optimal coordination of PV and BESS

Move forward to practice

e Lack of actual field demonstration of advanced
stability-related HPP controls
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Hierarchical HPP control framework
Develop stability-constrained AC-power-flow-based
optimal control
Develop measurement-based real-time inertia
estimation

Plant-level stabilization

Develop versatile GFM controls
Develop optimal coordinated control of PV and battery

First-of-its-kind field test in Hawaii

Develop a “no-harm to grid” field test plan to
demonstrate 100% renewable operation for hours
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