

# A Photovoltaic (PV) Analysis and Response Support (PARS) platform

EE0008770 managed by David Walter

# Professor Ning Lu Electrical and Computer Engineering Department

Prepared for the DOE Transients, Dynamics Modeling and Analytics Webinars Nov. 17, 2021



# Background

• An Overview of the PARS Project



# **Project Summary**

The objective of this project is to develop a Photovoltaic (PV) Analysis and Response Support (PARS) platform that provides real-time situational awareness and optimal response plan selection. By binding steady-state and dynamic simulation and integrating faster-than-real-time simulation into real-time simulation, the PARS operation platform can be used to emulate, monitor, and develop optimal response plans for hybrid PV systems locate at transmission, distribution, all the way down to behind-the-meter (BTM) customer sites in both normal and emergency operations. When running off-line using historical data, PARS can also be used as a planning platform to design and test PV-based grid support functions and perform cost-benefit studies.





### **Key Personnel/Organizations**

PI: Ning Lu (North Carolina State University) Key Personnel: David Lubkeman, Srdjan Lukic, Mesut Baran, Wenyuan Tang, Isaac Panzarella (North Carolina State Uniad)er A Samaan and Mallikarjuna R Vallem (Pacific Northwest National Lab); Xia Jiang and George Stefopoulos (New York Power Authorita)ura Kraus and Roger Willardson (Strata Solar)arshall Cherry (Roanoke Electric Cooperative)PJ Rehm (ElectriCities); Paul Darden (Wilson Energy)EdmondMiller and MattMakdad(New RiverLight&Powe)

#### **Key Milestones & Deliverables**

| Year 1: | Prototype PARS running on OPAL-RT using benchmark IEEE test systems                        |
|---------|--------------------------------------------------------------------------------------------|
| Year 2: | PARS running on OPAL-RT on NYPA 500-bus system and on realistic distribution feeder models |
| Year 3: | Three demonstration PARS running on NYPA, Strata Solar and NCSU sites                      |

#### **Project Impact**

The expect outcome of this project is to bring the performance of the hybrid PV systems to be on a par with those of flexible generation resources in the following four performance areas when providing grid support functions (GSFs): visibility, dispatchability, security, and reliability.



# **Technical Objectives and Deliverables**

- **Objective:** Develop a Photovoltaic (PV) Analysis and Response Support (PARS) platform as a power grid digital twin that provides real-time situational awareness and optimal response plan selection.
- **Deliverables:** A functional prototype of the PARS platform



North Carolina State University, Dr. Ning Lu, Nov 18.2021

4

# **Technical Objectives and Deliverables**

**Objective:** Develop a *Photovoltaic (PV) Analysis and Response Support (PARS) platform as a power grid digital twin* that provides real-time situational awareness and optimal response plan selection.



# **Functions Developed in Year 1 and Year 2**



# **Main Grid Support Functions Considered in Distribution System Operation**



# **List of Publications - Published**

| Full Author List                                                                                                                    | Article Title                                                                                                                   | Journal/Conference                                               |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu                                                                                       | A Meta-learning based Distribution System Load Forecasting Model Selection Framework                                            | Applied Energy                                                   |
| F. Xie, C. McEntee, M. Zhang, B. Mather and N. Lu,                                                                                  | Development of an Encoding Method on an Co-simulation Platform for Mitigating the Impact of Unreliable Communication            | IEEE transactions on smart grid                                  |
| Q. Long, H. Yu, F. Xie, N. Lu and D. Lubkeman                                                                                       | Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-<br>Constrained Levenberg-Marquardt Algorithm | IEEE Transactions on Smart Grid                                  |
| M. Liang, Y. Meng, J. Wang, D. Lubkeman and N. Lu,                                                                                  | FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets                                                          | IEEE Transactions on Smart Grid                                  |
| H. Yu, M. A. Awal, H. Tu, I. Husain and S. Lukic                                                                                    | Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator<br>Controlled Grid-Connected Inverters  | IEEE Transactions on Power<br>Electronics                        |
| Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew<br>Kling, David L. Lubkeman, and Ning Lu                                      | A Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method.                                                  | IEEE Transactions on Smart Grid                                  |
| Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan,<br>Ashwin Shirsat, Mesut Baran, Wenyuan Tang, David<br>Lubkeman, Ning Lu | MW-level PV powered microgrid energy management                                                                                 | 2021 PES General Meeting                                         |
| Victor Paduani, Lidong Song, Bei Xu, Dr. Ning Lu                                                                                    | PV power tracking control for providing ancillary services                                                                      | 2021 PES General Meeting                                         |
| Ashwin Shirsat, Valliappan Muthukaruppan, Rongxing Hu,<br>Ning Lu, Mesut Baran, David Lubkeman, Wenyuan Tang                        | Community-level PV powered dynamic microgrid energy management                                                                  | 2021 PES General Meeting                                         |
| Quan Nguyen, Mallikarjuna R. Vallem, Bharat Vyakaranam,<br>Ahmad Tbaileh, Xinda Ke, Nader Samaan                                    | Controlling PV hybrid system for Black start                                                                                    | 2021 PES General Meeting                                         |
| Ahmad Tbaileh, Mallikarjuna R. Vallem, Quan Nguyen, Xinda<br>Ke, Nader A. Samaan, George Stefopoulos, Xia Jiang                     | Controlling PV hybrid system for Black start                                                                                    | 2021 PES General Meeting                                         |
| H. Yu, M. A. Awal, H. Tu, Y. Du, S. Lukic and I. Husain                                                                             | A Virtual Impedance Scheme for Voltage Harmonics Suppression in Virtual Oscillator<br>Controlled Islanded Microgrids            | 2020 IEEE Applied Power Electronics<br>Conference and Exposition |
| Asmaa Alrushoud, Catie McEntee, and Ning Lu                                                                                         | A Zonal Volt/VAR Control Mechanism for High PV Penetration Distribution Systems                                                 | 2021 PES General Meeting                                         |
| Long Qian, Hui Yu, Fuhong Xie, Wenti Zeng, Srdjan Lukic,<br>Ning Lu, and David Lubkeman                                             | Microgrid Power Flow Control with Integrated Battery Management Functions                                                       | 2020 PES General Meeting                                         |
| A. Alrushoud and N. Lu                                                                                                              | Impacts of PV Capacity Allocation Methods on Distribution Planning Studies                                                      | 2020 T&D                                                         |
| Jiyu Wang, Ning Lu, Sen Huang, and Di Wu                                                                                            | A Data-driven Control Method for Operating the Commercial HVAC Load as a Virtual Battery                                        | 2019 PES General Meeting                                         |





# **List of Publications - Submitted**

- Yiyan Li, Lidong Song, Si Zhang, Laura Kraus, Taylor Adcox, Roger Willardson, Abhishek Komandur, and Ning Lu, "TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection," https://arxiv.org/abs/2111.08809. submitted to IEEE Trans. Sustainable Energy.
- 2. Lidong Song, Yiyan Li, and Ning Lu. "ProfileSR-GAN: A GAN based Super-Resolution Method for Generating High-Resolution Load Profiles." arXiv preprint arXiv:2107.09523 (2021). Submitted to IEEE Trans. Smart Grid, under 2st round review
- 3. Mingzhi Zhang, Xiangqi Zhu, and Ning Lu, "A Data-driven Probabilistic-based Flexibility Region Estimation Method for Aggregated Distributed Energy Resources," Submitted to IEEE Trans. Smart Grid. https://arxiv.org/abs/2110.07406.
- 4. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, "A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources," submitted to 2022 PES General meeting. https://arxiv.org/pdf/2111.09464.pdf
- 5. Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, "Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations," submitted to 2022 IEEE PESGM. https://arxiv.org/pdf/2111.10031.pdf
- 6. Hanpyo Lee, Han Pyo Lee, Mingzhi Zhang, Mesut Baran, Ning Lu, PJ Rehm, Edmond Miller, Matthew Makdad P.E., "A Novel Data Segmentation Method for Data-driven Phase Identification," submitted to 2022 PES General Meeting. http://arxiv.org/abs/2111.10500
- 7. Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, "A Two-stage Training Strategy for Reinforcement Learning based Volt-Var Control," submitted to 2022 PES General Meeting. https://arxiv.org/abs/2111.11987



### Content

- An Overview of the PARS Project
- An Overview of the PARS Platform



# An overview of the PARS platform



# 1. PARS Real-time simulation platform

- Modeling the operation of interconnected physical systems in high-fidelity
- **Device-level control**: Gridfollowing and Grid-forming
- **Dynamics** when transition from one stead-state operation state to another
- Obey device and network
   operational limits
- **Communication** between the local and central controllers



#### 2. Situation Awareness Tool

- **Monitor** the current status
- Authenticate the data
- **Detect** anomalies
- Forecast the future

### 3. Faster-than-real-time Optimal Response Tool

- System-level control: energy and power management
- Response options (from 24-hour ahead to intra-hour)
- Coordination
- Optimization



# **PARS: A Network of High-fidelity Digital Twins**



#### Topologies

- Transmission: IEEE-118 systems
- Distribution: IEEE-123 systems
- Modularized feeder topologies

#### **Data Sources**

- Actual data sets
- Synthetic data sets

#### **Device Models**

- Factory data sheets
- Field tests

#### Use faster-than-real-time

simulation on OPENDSS for algorithm development. (**Quasistatic** power flow runs, up to every 1-minute)

Use **real-time** simulation on OPAL-RT for testing and validation studies. ( $\mu s$  for modeling inverter based resources and ms for power flow calculations)



12

# **Developing PARS Digital Twins (1): In the past – No load diversity**

### In the past:

- Feeder head data is recorded at the substation
- Sub-nodes load profiles are not measured
- Use the same load
   profile for all sub-nodes



13

Time of the day (hour)

# **Developing PARS Digital Twins (2): Diversified Load Profiles**



- 1. Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method." *IEEE Transactions on Smart Grid* 11, no. 6 (2020): 5396-5406.
- 2. Ming Liang, Jiyu Wang, Yao Meng, Ning LU, David Lubkeman, and Andrew Kling. "A Sequential Energy Disaggregation Method using Lowresolution Smart Meter Data, " Proc. of IEEE Innovative Smart Grid Technologies, Washington DC, 2019.

North Carolina State University, Dr. Ning Lu, Nov 18.2021

SOLAR ENERGY

**TECHNOLOGIES OFFICE** 

14

# Developing PARS Digital Twins (2): Incorporate Day-ahead and Real-time Forecast for PV and Loads to Model Forecasting Errors



Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A Meta-learning based Distribution System Load Forecasting Model Selection Framework." *arXiv preprint arXiv:2009.12001* (2020). Accepted by Applied Energy. A brief introduction of the paper can be found in Youtube at: <u>https://youtu.be/i8bUvGi9rC8</u>

e found in SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy North Carolina State University, Dr. Ning Lu, Nov 18.2021

# Situational Awareness (1): Meta-learning based Load Forecasting

- Using meta learning to identify the best-fit forecasting model
- The framework is highly **automated** and **extendable**

Handle heterogeneous forecasting tasks

₫,

6

phase

3-phase backbone

ෙ

hase

phasec

↓↓↓↓↓↓ … ,





Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A Meta-learning based Distribution System Load Forecasting Model Selection Framework." arXiv preprint arXiv:2009.12001 (2020). Accepted by Applied Energy. A brief introduction of the paper can be found in Youtube at: https://youtu.be/i8bUvGi9rC8



North Carolina State University, Dr. Ning Lu, Nov 18.2021

16

# Situational Awareness (2): Spatial-temporal PV forecasting

A two-stage spatial-temporal forecasting framework: worked with Strata Solar for combining physics-based modeling and deep-learning modeling approaches to improve forecasting accuracy and robustness.



#### Data source: Strata Solar

- Day-ahead stage can provide stable operation baseline for energy management
- Real-time stage can catch the intra-hour PV variations to support power management

Yiyan Li, Lidong Song, Si Zhang, Laura Kraus, Taylor Adcox, Roger Willardson, Abhishek Komandur, and Ning Lu, "TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection," https://arxiv.org/abs/2111.08809. submitted to IEEE Trans. Sustainable Energy.

North Carolina State University, Dr. Ning Lu, Nov 18.2021

17

# **Spatial-temporal PV forecasting - methodology**

Using neighbors' data to improve real-time stage forecasting accuracy

- (1) Code power output into matrix (2) Select most correlated neighbors for the target site
- ③ Using Temporal Convolutional Net (TCN) to achieve forecasting



Yiyan Li, Lidong Song, Si Zhang, Laura Kraus, Taylor Adcox, Roger Willardson, Abhishek Komandur, and Ning Lu, "TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection," https://arxiv.org/abs/2111.08809. submitted to IEEE Trans. Sustainable Energy.



18

# Situational Awareness (3): Load Profile Super-resolution (SR)

### **Develop high-resolution PV and load profiles**

- Measurements uploaded from smart meter are usually averaged to 15-min or 30-min low resolution (LR)
- High-resolution (HR) load data is important in system situational awareness (e.g. peak load, load ramp)
- We restore the high-frequency load dynamics from the LR measurements using deep learning methods



### A GAN-based Super-resolution Method



### From 15-minutes → Minute-by-minute → intra-minute



Lidong Song, Yiyan Li, and Ning Lu. "ProfileSR-GAN: A GAN based Super-Resolution Method for Generating High-Resolution Load Profiles." arXiv preprint arXiv:2107.09523 (2021). Submitted to IEEE Trans. Smart Grid, under 2<sup>st</sup> round review

TECHNOLOGIES OFFICE U.S. Department Of Energy 19

# PARS: A Nested, Highly-scalable Modeling Framework

- OPENDSS for development and OPAL-RT testbed for testing
- System-level: Energy scheduling and power dispatch for managing uncertainties
- Device-level: Grid forming and grid following functions for dynamic responses



#### Simulation time frame:

- $\mu s \rightarrow ms$
- Slow and fast transients are modeled
- Operation limits → current, voltage, power
- Applications  $\rightarrow$  protections and power quality



Fuhong Xie, C. McEntee, M. Zhang, B. Mather and N. Lu, "Development of an Encoding Method on an Co-simulation Platform for Mitigating the Impact of Unreliable Communication," in *IEEE Transactions on Smart Grid*, Videos related with the paper: <u>https://www.youtube.com/watch?v=SdibDKEpw60</u>

F. Xie et al., "Networked HIL Simulation System for Modeling Large-scale Power Systems," 2020 52nd North American Power Symposium (NAPS).

Faster-than-real-time, steady-state, optimal-response-actions

F. Xie, C. McEntee, M. Zhang and N. Lu, "An Asynchronous Real-time Co-simulation Platform for Modeling Interaction between Microgrids and Power Distribution Systems," 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019.



# **PARS: An Asynchronous Modeling Framework**



Uniqueness of the PARS platform

- Sequence of grid operation: energy management, power balance, frequency and voltage regulation
- Device-level and microgrid controller interactions via realistic communication protocols
- Fast and slow transients
- Impacts of communication delays, errors, cyber attacks on controlling distributed energy resources.



### Content

- An Overview of the PARS Project
- An Overview of the PARS Platform
- PARS PV-based Grid Support Function Development



# **NC State Modeling Team**

Project Lead by:



Dr. Ning Lu



Dr. Mesut Baran



Dr. Wenyuan Tang

PhD Students:



**Rongxing Hu** 









Hyeonjin Kim

Graduated PhD Students:



Jiyu Wang

**Catie McEntee** 



Ming liang



23

# **Situational Awareness Team**

Project Lead by: Dr. Yiyan Li



PhD Students:



Lidong Song

Si Zhang



Hanpyo Lee





SOLAR ENERGY **TECHNOLOGIES OFFICE** 

24

# **Main Grid Support Functions Considered in T&D Restoration Operation**



# **Device-Level Grid-forming and Grid-following Functions**

| Plant-level<br>Functions | Grid Support Functions              | PV<br>utility-scale | PV<br>Roof-top | Energy Storage<br>(Stationary/Mobile) | Diesel<br>Generation | Loads        |
|--------------------------|-------------------------------------|---------------------|----------------|---------------------------------------|----------------------|--------------|
| Grid-following           | Real Power Regulation               | $\checkmark$        | ~              |                                       | $\checkmark$         |              |
| Grid-following           | Reactive Power Regulation           | ~                   | ~              | ✓                                     | $\checkmark$         |              |
|                          | Microgrid Formation                 | $\checkmark$        |                | ✓                                     | $\checkmark$         |              |
| Grid-forming             | Voltage and Frequency<br>Regulation |                     |                | ~                                     | ~                    |              |
| Grid-forming             | Manage 3-phase Load<br>Unbalance    |                     |                | ~                                     | $\checkmark$         |              |
| Grid-forming             | Cold Load Pickup                    |                     |                | ~                                     | ~                    | ~            |
| Grid-forming             | Blackstart                          | $\checkmark$        |                | ~                                     | ~                    | $\checkmark$ |

1. Victor Paduani, Huiyu Yu, Bei Xu, Ning Lu, "A Unified Power-Setpoint Tracking Algorithm for Utility-Scale PV Systems with Power Reserves and Fast Frequency Response Capabilities", <u>https://arxiv.org/abs/2105.05324</u>, accepted by the IEEE transactions on Sustainable Energy.

2. Victor Paduani, Lidong Song, Bei Xu, Dr. Ning Lu, "Maximum Power Reference Tracking Algorithm for Power Curtailment of Photovoltaic Systems", submitted to IEEE PES 2021 General Meeting. 2021. arXiv preprint arXiv:2011.09555.

3. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, "A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources," submitted to 2022 PES General meeting.



26

# Managing Uncertainties 1: through Microgrid Energy Scheduling

- "Energy Scheduling" is done for the entire microgrid operation period.
- Scheduling Interval:  $\Delta t = 30$  minute or 60 minute

1.

2.

3.

load

Execute repetitively every  $\Delta t$  using the latest PV+load forecast



- 1. Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan, Ashwin Shirsat, Mesut Baran, Wenyuan Tang, David Lubkeman, Ning Lu, "A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System", submitted to IEEE PES 2021 General Meeting. 2021. Available online at: https://arxiv.org/abs/2011.08735
- 2. Ashwin Shirsat, Valliappan Muthukaruppan, Rongxing Hu, Ning Lu, Mesut Baran, David Lubkeman, Wenyuan Tang, "Hierarchical Multi-timescale Framework for Operation of Dynamic Community Microgrid", submitted to IEEE PES 2021 General Meeting. 2021. https://arxiv.org/abs/2011.10087

AR ENERGY 27 **TECHNOLOGIES OFFICE** North Carolina State University, Dr. Ning Lu, Nov 18.2021

# **Managing Uncertainties 2: through Load Following and Power Balancing**

- "Energy Scheduling" is done for each scheduling period  $\Delta t$  (30~60 minutes)
- Scheduling Interval:  $\Delta \tau = 5$  minute
- Can execute repetitively every  $\Delta \tau$  using the real-time PV+load forecast



### Output

- 1. Battery charging and discharging schedule
- 2. Diesel generator generation schedule
- 3. Controllable loads
- 4. Reconfiguration schedules (breaker on/off)

- 1. Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan, Ashwin Shirsat, Mesut Baran, Wenyuan Tang, David Lubkeman, Ning Lu, "A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System", submitted to IEEE PES 2021 General Meeting. 2021. Available online at:https://arxiv.org/abs/2011.08735
- 2. Ashwin Shirsat, Valliappan Muthukaruppan, Rongxing Hu, Ning Lu, Mesut Baran, David Lubkeman, Wenyuan Tang, "Hierarchical Multi-timescale Framework for Operation of Dynamic Community Microgrid", submitted to IEEE PES 2021 General Meeting. 2021. https://arxiv.org/abs/2011.10087

# **Blackstart Sequence Modeling Using IEEE 118-bus System**

### **Utilizing IBG significantly reduces**

- The time to energize transmission backbone (1/3 of the time)
- The amount of dispatchable load (factor of 18)



- 1. Nguyen, Quan, Jim Ogle, Xiaoyuan Fan, Xinda Ke, Mallikarjuna R. Vallem, Nader Samaan, and Ning Lu. "EMS and DMS Integration of the Coordinative Realtime Sub-Transmission Volt-Var Control Tool under High DER Penetration." *arXiv preprint arXiv:2103.10511* (2021).
- 2. Nguyen, Q., Vallem, M.R., Vyakaranam, B., Tbaileh, A., Ke, X. and Samaan, N., 2021. Control and Simulation of a Grid-Forming Inverter for Hybrid PV-Battery Plants in Power System Black Start. *arXiv preprint arXiv:2103.11239*.
- 3. Tbaileh A., M.R. Vallem, Q.H. Nguyen, X. Ke, N.A. Samaan, G. Stefopoulos, and X. Jiang. "Optimal Power System Black start using Inverter-Based Generation." In IEEE PES GM 2021.

160

North Carolina State University, Dr. Ning Lu, Nov 18.2021

SOLAR ENERGY

# **Blackstart Sequence Modeling using NYPA Network Model**



NY Poised to Make Largest Grid Investment in 30 Years - NYISO



# **Distribution Level - 3 Use Cases**



# **Controllable Distributed Energy Resources**

|                                           | Reconfiguration                           | PV                                                                                             | Battery                                                                     | Diesel<br>Generator | Load                                                   | Cold Load<br>Pickup | Phase Load<br>Balance |
|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|--------------------------------------------------------|---------------------|-----------------------|
| MW-level PV<br>farms                      | All sectionalizers<br>are controllable    | Fully<br>observable and<br>controllable                                                        | MW-level fully<br>controllable                                              | None                | Control load in the 2 <sup>nd</sup> stage              | Considered          | Considered            |
| Residential<br>kW-level PV                | All sectionalizers are controllable       | Rooftop PV not<br>controllable<br>and observable                                               | Installed at the<br>feeder-head<br>fully<br>controllable<br>and are used    | Yes                 | No load control                                        | Considered          | Not Considered        |
| Community<br>PV with<br>hundreds of<br>kW | Can control<br>adjacent<br>sectionalizers | Community PV<br>observable and<br>controllable.<br>Residential<br>rooftop PV not<br>observable | Co-located as a<br>part of<br>microgrid and<br>with one or two<br>customers | Yes                 | Control load in<br>2nd stage via<br>demand<br>response | Considered          | Considered            |

1. Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan, Ashwin Shirsat, Mesut Baran, Wenyuan Tang, David Lubkeman, Ning Lu, "A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System", submitted to IEEE PES 2021 General Meeting. 2021. Available online at:https://arxiv.org/abs/2011.08735

2. Ashwin Shirsat, Valliappan Muthukaruppan, Rongxing Hu, Ning Lu, Mesut Baran, David Lubkeman, Wenyuan Tang, "Hierarchical Multi-timescale Framework for Operation of Dynamic Community Microgrid", submitted to IEEE PES 2021 General Meeting. 2021. https://arxiv.org/abs/2011.10087

 
 SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy
 32

 North Carolina State University, Dr. Ning Lu, Nov 18.2021

# **An Example of Energy Management Results**



Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan, Ashwin Shirsat, Mesut Baran, Wenyuan Tang, David Lubkeman, Ning Lu, "A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System", submitted to IEEE PES 2021 General Meeting. 2021. Available online at:https://arxiv.org/abs/2011.08735

Group 2 receives a longer service than group 3

16

Group 7

Group 6

Group 5

Group 4

Group 3 (CL)

Group 2 (CL)

20

2.2

SOLAR ENERGY

**TECHNOLOGIES OFFICE** 

33

24

Group 1

18

U.S. Department Of Energy North Carolina State University, Dr. Ning Lu, Nov 18.2021

### Content

- An Overview of the PARS Project
- An Overview of the PARS Platform
- PARS PV-based Grid Support Function Development
- Real-time Simulation Test System Development



### **NC State HIL Team**

This work is lead by: Dr. David Lubkeman Dr. Srdjan Lukic



PhD students:

Graduated PhD students:



Fuhong Xie

Long Qian

Hui Yu

Qi Xiao

**Charles Kelly** 



# **Coordination: System-Level Control Versus Device-level Control**



**1**.Mingzhi Zhang, Xiangqi Zhu, and Ning Lu. "A Data-driven Probabilistic-based Flexibility Region Estimation Method for Aggregated Distributed Energy Resources", submitted to IEEE Transaction on Sustainable Energy. 2021. <u>https://arxiv.org/abs/2110.07406</u>.



36

# **Use-cases Implementation Progress**

- Features of the HIL platform:
  - Real-time
  - Realistic communication
  - Device-level controllers and sensors
  - System-level: external microgrid controllers

### • Testing Procedures:

- -Validate stability in Simulink
- -Implement model for HIL tests
- -Insert unintentional communication errors
- -Insert intentional errors (cyber attacks)

| Restoration Scenario | Simulink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Day-long<br>HIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unreliable communication | Cyber attacks |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|
| Utility-Scale PV     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ongoing                  | ongoing       |
| Rooftop PV           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Image: A second s</li></ul> | ongoing                  | ongoing       |
| Dynamic Microgrids   | <ul> <li>Image: A second s</li></ul> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ongoing                  | ongoing       |



Diagram of HIL platform

### **Real-time Simulation: PV Plant – Main functionalities in detail**





38

Victor Paduani, et al. "Maximum Power Reference Tracking Algorithm for Power Curtailment of Photovoltaic Systems." In Proceedings PESGM 2021

# **Rooftop PV system – Grid-following Functions**

| Module  | Functionality                 | Requirement                                                                           |
|---------|-------------------------------|---------------------------------------------------------------------------------------|
|         | Active power<br>curtailment   | Can follow power curtailment setpoints.                                               |
|         | Disturbance ride-             | Trips in accordance with default settings from                                        |
|         | Reactive power control        | Provides all reactive power control modes                                             |
| Rooftop | modes                         | established for Category II-B DER from IEEE 1547-2018.                                |
| PV      | Frequency-watt droop          | Provides f-watt droop to support the grid.                                            |
|         | Voltage-active power<br>droop | Can curtail their output power if the grid voltage increases (optional mode)          |
|         | Code-based model              | Implemented in a code-based environment to provide an alternative model without block |
|         |                               | diagrams (reducing model)                                                             |

- Main differences of <u>Rooftop PV</u> model compared to <u>PV Plant</u>:
  - -Runs in phasor domain (no waveforms)
  - -larger time-step
  - -No DC-link dynamics
  - -Different Q-ctrl modes
  - -Lower computational cost (can model 100's of units)

### Includes IEEE 1547-2018 Category II-B DER requirements:







39

Paduani, Victor, et al. "Maximum Power Reference Tracking Algorithm for Power Curtailment of Photovoltaic Systems." In Proceedings PESGM 2021

# **Diesel Generator – Model developed to date**

| Module    | Functionality                                                   | Requirement                                                                                     |
|-----------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|           | Ramping Capability                                              | Can regulate its output power ramping to a prespecified p.u./s for improving system robustness. |
|           | Grid Synchronization                                            | Can adjust its voltage magnitude and phase for a smooth grid synchronization.                   |
| Diesel    | Fuel Consumption<br>Estimation                                  | Calculates the fuel consumption.                                                                |
| Generator | Mode switching<br>capability – grid forming /<br>grid-following | Can operate in grid-forming or grid-<br>following modes.                                        |
|           | Power factor control                                            | Can follow active power setpoint and a given power factor.                                      |
|           | Disturbance ride-through                                        | Will trip in accordance with PRC-024-2 (NERC)                                                   |



**Diesel Generator (DG)** 



#### Study the interactions between the synchronous generator and the inverter based resources

- Functionalities are developed to give the modeling team full control over the DG's output p
- Can be used to evaluate how a DG can assist a low-inertia microgrid in the future.
- Provides backup energy for moments of low solar/BESS availability.
- Design utilizes synchronous machine model from [1].
- [1] "Simplified synchronous machine. Mathworks R2006a."

Q. Long, H. Yu, F. Xie, N. Lu and D. Lubkeman, "Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm," in IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2020.3026617.

Structure of a low-inertia microgrid



40

# **BESS – Model developed to date**

| Module                       | Operation<br>mode                            | Functionality                                                       | Requirement                                                                                                                                                                     |
|------------------------------|----------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                              | Voltage and frequency regulation                                    | It's responsible for regulating PCC voltage and setting the system frequency.                                                                                                   |
|                              |                                              | Three-phase<br><b>imbalance</b> control                             | If the distribution grid is imbalanced, ES should quickly readjust its output voltage to maintain voltage balance.                                                              |
|                              | Grid-                                        | Current limiting control                                            | The inverters must be protected from overcurrent of the semiconductor devices in overload and fault cases.                                                                      |
| Battery<br>Energy<br>Storage | mode                                         | <b>Coordinated</b> voltage regulation with <b>multiple ES units</b> | If there are multiple ES units are connected into the distribution grid and worked as grid-forming mode, PCC voltage can be regulated using the centralized secondary control.  |
| ( <b>BESS</b> )              |                                              | Resynchronization                                                   | To connect the MG to the grid, the phase and<br>amplitude voltage between the grid and the MG will<br>be regulated as an equal value using the<br>synchronization control loop. |
|                              | Real and reactive<br>power dispatch<br>Grid- |                                                                     | In grid-tied or grid-following mode, the model<br>should make the output power of the inverter follow<br>the reference values and maintain the voltage<br>reference tracking    |
|                              | mode                                         | Disturbance <b>ride-</b><br>through                                 | When working in the grid-following mode, the<br>machine will trip if the grid's voltage or frequency<br>goes beyond the specified limits.                                       |

Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, "A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources," submitted to 2022 PES General meeting.



# **BESS – Model developed to date**

|                     | Three Single-Phase Inverter Model                                                         | Three-phase Inverter Model                                                                                                                    |  |
|---------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Characteristic      | Separate circuit and controllers for each phase.                                          | Integrated circuit and controller.                                                                                                            |  |
| Application         | Mostly used in the residential applications and for running lower power loads.            | Mostly used in large industries and for high power applications.                                                                              |  |
| Grid-forming mode   | BESS power limitation for unbalance regulation: $ P_a $ , $ P_b $ , $ P_c  \le P_{rated}$ | BESS power limitation for unbalance regulation: 1)<br>power unbalance factor* $\leq 0.6$ ; 2) $ P_a $ , $ P_b $ , $ P_c  \leq 0.95 P_{rated}$ |  |
| Grid-following mode | Output power for each phase is controllable.                                              | Output power can't be controlled per phase                                                                                                    |  |





Three Single-phase Inverter Model

Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, "A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources," submitted to 2022 PES General meeting.

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

North Carolina State University, Dr. Ning Lu, Nov 18.2021

42

# **BESS: Topology and Control of a 3-phase Grid-forming Inverter**



Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, "A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources," submitted to 2022 PES General meeting.

s SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy



# Load – Model developed to date

|               | Functionality            | Requirement                           |
|---------------|--------------------------|---------------------------------------|
|               | Realistic load           | Generate node load profile from       |
|               | <b>profile</b> synthesis | smart meter data actual load data.    |
|               |                          | Use Super–Resolution algorithms for   |
|               |                          | increased data resolution             |
|               | Modeling demand          | Model the behavior of HVAC load       |
|               | response (pay-back       | regarding house scale and appliance   |
| and cold load |                          | parameters                            |
| Load          | effects): HVAC load      |                                       |
| Model         | modeling                 |                                       |
|               | Load model               | Estimate the parameters of the state- |
|               | parameterization         | space model based on actual HVAC load |
|               |                          | profile                               |
|               | Real-time Cold Load      | Generate real-time cold-load-pickup   |
|               | Pickup (CLPU)            | response according to the commands    |
|               | profile generation       | from EMS system                       |
|               |                          |                                       |



Lidong Song, Yiyan Li, and Ning Lu. "ProfileSR-GAN: A GAN based Super-Resolution Method for Generating High-Resolution Load Profiles." arXiv preprint arXiv:2107.09523 (2021). Submitted to IEEE Trans. Smart Grid, under 2<sup>st</sup> round review



44

# **EMT-Phasor Co-simulation – Performance Benchmarking**



[1] Xie, Fuhong, et al. "An asynchronous real-time co-simulation platform for modeling interaction between microgrids and power distribution systems." 2019 IEEE PESGM. [2] Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, "Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations," submitted to 2022 IEEE PESGM.



SOLAR ENERGY

45

# Impact of Communication Delays and data interpolation for Coupling



(a) increasing the communication delay between EMT and phasordomains;

(b) utilizing the time interpolation coupling technique

Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, "Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations," submitted to 2022 IEEE PESGM.



46

### Content

- An Overview of the PARS Project
- An Overview of the PARS Platform
- PARS PV-based Grid Support Function Development
- Real-time Simulation Test System Development
- Optimal Response Tool Development

# **Faster-than Real-time for Optimal Response Option Selection**





SOLAR ENERGY

**TECHNOLOGIES OFFICE** U.S. Department Of Energy

# Conclusion

- The PARS approach is summarized as follows:
  - Develop grid support functions using faster-than-real-time tools
  - Test and validate performance on real-time simulation platforms with communication links
  - Coordination between system-level and device-level controllers
  - Incorporate forecasting into energy and power management and consider device-level dynamic responses between power management intervals
- High-fidelity Digital Twins are important for developing new grid support functions
  - Compared with field tests, testing on digital twins are safer, cheaper, faster, and scalable
  - Data requirements are high: require realistic network topologies; require PV and load data sets for populating the network models; require manufacture data sheets; require field tests for benchmarking the model dynamic responses; ....
- Machine learning applications can help
  - Meta-learning for forecasting, GAN-based model for load profile generation, reinforcement learning for demand response control, ...



49

# **List of Publications**

| Full Author List                                                                                                                    | Article Title                                                                                                                   | Journal/Conference                                               |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu                                                                                       | A Meta-learning based Distribution System Load Forecasting Model Selection Framework                                            | Applied Energy                                                   |
| F. Xie, C. McEntee, M. Zhang, B. Mather and N. Lu,                                                                                  | Development of an Encoding Method on an Co-simulation Platform for Mitigating the Impact of Unreliable Communication            | IEEE transactions on smart grid                                  |
| Q. Long, H. Yu, F. Xie, N. Lu and D. Lubkeman                                                                                       | Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-<br>Constrained Levenberg-Marquardt Algorithm | IEEE Transactions on Smart Grid                                  |
| M. Liang, Y. Meng, J. Wang, D. Lubkeman and N. Lu,                                                                                  | FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets                                                          | IEEE Transactions on Smart Grid                                  |
| H. Yu, M. A. Awal, H. Tu, I. Husain and S. Lukic                                                                                    | Comparative Transient Stability Assessment of Droop and Dispatchable Virtual Oscillator<br>Controlled Grid-Connected Inverters  | IEEE Transactions on Power<br>Electronics                        |
| Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew<br>Kling, David L. Lubkeman, and Ning Lu                                      | A Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method.                                                  | IEEE Transactions on Smart Grid                                  |
| Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan,<br>Ashwin Shirsat, Mesut Baran, Wenyuan Tang, David<br>Lubkeman, Ning Lu | MW-level PV powered microgrid energy management                                                                                 | 2021 PES General Meeting                                         |
| Victor Paduani, Lidong Song, Bei Xu, Dr. Ning Lu                                                                                    | PV power tracking control for providing ancillary services                                                                      | 2021 PES General Meeting                                         |
| Ashwin Shirsat, Valliappan Muthukaruppan, Rongxing Hu,<br>Ning Lu, Mesut Baran, David Lubkeman, Wenyuan Tang                        | Community-level PV powered dynamic microgrid energy management                                                                  | 2021 PES General Meeting                                         |
| Quan Nguyen, Mallikarjuna R. Vallem, Bharat Vyakaranam,<br>Ahmad Tbaileh, Xinda Ke, Nader Samaan                                    | Controlling PV hybrid system for Black start                                                                                    | 2021 PES General Meeting                                         |
| Ahmad Tbaileh, Mallikarjuna R. Vallem, Quan Nguyen, Xinda<br>Ke, Nader A. Samaan, George Stefopoulos, Xia Jiang                     | Controlling PV hybrid system for Black start                                                                                    | 2021 PES General Meeting                                         |
| H. Yu, M. A. Awal, H. Tu, Y. Du, S. Lukic and I. Husain                                                                             | A Virtual Impedance Scheme for Voltage Harmonics Suppression in Virtual Oscillator<br>Controlled Islanded Microgrids            | 2020 IEEE Applied Power Electronics<br>Conference and Exposition |
| Asmaa Alrushoud, Catie McEntee, and Ning Lu                                                                                         | A Zonal Volt/VAR Control Mechanism for High PV Penetration Distribution Systems                                                 | 2021 PES General Meeting                                         |
| Long Qian, Hui Yu, Fuhong Xie, Wenti Zeng, Srdjan Lukic,<br>Ning Lu, and David Lubkeman                                             | Microgrid Power Flow Control with Integrated Battery Management Functions                                                       | 2020 PES General Meeting                                         |
| A. Alrushoud and N. Lu                                                                                                              | Impacts of PV Capacity Allocation Methods on Distribution Planning Studies                                                      | 2020 T&D                                                         |
| Jiyu Wang, Ning Lu, Sen Huang, and Di Wu                                                                                            | A Data-driven Control Method for Operating the Commercial HVAC Load as a Virtual Battery                                        | 2019 PES General Meeting                                         |

# **List of Publications - Submitted**

- Yiyan Li, Lidong Song, Si Zhang, Laura Kraus, Taylor Adcox, Roger Willardson, Abhishek Komandur, and Ning Lu, "TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection," https://arxiv.org/abs/2111.08809. submitted to IEEE Trans. Sustainable Energy.
- 2. Lidong Song, Yiyan Li, and Ning Lu. "ProfileSR-GAN: A GAN based Super-Resolution Method for Generating High-Resolution Load Profiles." arXiv preprint arXiv:2107.09523 (2021). Submitted to IEEE Trans. Smart Grid, under 2st round review
- 3. Mingzhi Zhang, Xiangqi Zhu, and Ning Lu, "A Data-driven Probabilistic-based Flexibility Region Estimation Method for Aggregated Distributed Energy Resources," Submitted to IEEE Trans. Smart Grid. https://arxiv.org/abs/2110.07406.
- 4. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, "A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources," submitted to 2022 PES General meeting. https://arxiv.org/pdf/2111.09464.pdf
- 5. Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, "Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations," submitted to 2022 IEEE PESGM. https://arxiv.org/pdf/2111.10031.pdf
- 6. Hanpyo Lee, Han Pyo Lee, Mingzhi Zhang, Mesut Baran, Ning Lu, PJ Rehm, Edmond Miller, Matthew Makdad P.E., "A Novel Data Segmentation Method for Data-driven Phase Identification," submitted to 2022 PES General Meeting. http://arxiv.org/abs/2111.10500
- 7. Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, "A Two-stage Training Strategy for Reinforcement Learning based Volt-Var Control," submitted to 2022 PES General Meeting. https://arxiv.org/abs/2111.11987



51