

Let's work together on fast time-scale modeling of power systems with high distributed solar generation

Solar Energy Technologies Office
Systems Integration
November 16 & 17

Agenda – Day 2

November 17			
Time (ET)	Organization	Presenter	Topic/ Title
12:00	DOE/SETO SI	Kemal Celik	Introduction & Summary on Day 1
12:20	ERCOT	John Schmall	IBR Integration Experience and Needs from ERCOT Perspective
12:40	USF	Lingling Fan	Design of dynamic models and analysis tools for solar PVs under large grid
42.00	NICCLI	AP I	disturbances and weak grid conditions
13:00	NCSU	Ning Lu	Photovoltaic analysis and response support platform
13:20	ORNL	Suman Debnath	Library of advanced dynamic models of large-scale PV and PV-grids
13:35	GE	Maozhong Gong	Holistic modeling to analyze and improve the stability of IBR systems
13:50	NREL	Jin Tan	A hierarchical optimal control framework that leverages the fast response capability of IBRs
14:05	Break		
14:45	PNNL	Wei Du	Integrated multi-fidelity model and co-simulation platform for distribution system transient and dynamic analysis
15:00	PNNL	Wei Du	Introduction to universal interoperability for grid-forming inverters consortium
15:10	ANL	Dongbo Zhao	Performing transient and dynamic analysis of multiple levels of the power systems with renewable components
15:30	BNL	Peng Zhang	Ultra-scalable modeling and analytics of PV systems using of neural ODEs.
15:45	NREL	Andy Hoke	Improving the modeling accuracy and performance of analysis of transient dynamics of large-scale power grids with extensive IBRs
16:00	Q&A		
	Adjourn		

Focus on Transients and Dynamics

- Fast temporal behavior of bulk-power system and distribution networks affects the grid in a very fast & an interactive manner
 - The need for fully integrated simulation is also driven by the certain and significant future increase in BTM generation, storage and controllable variable loads.
 - It is important to better understand the transient and dynamic behavior of the fully integrated grid
 - **More Distributed:** The grid trends to having many small active resources such as rooftop PVs, smart appliances, and electric vehicle
 - More uncertainty: Uncertainties increase due to variable generation, smart loads, electric vehicles, generation and network contingencies, weather and cyber events, and hidden failures
 - Lower inertia: Power electronics-connected generation and consumption reduce the mechanical inertia in the system
 - Webinars include presentations on modeling and analyzing the transient and dynamic behaviors of various elements of the electric power grid, including load and distributed solar PV generation

Past & Current Projects and Programs

- Lab Call FY16 SI Sunlamp Projects
 - Projects with components on dynamics and protection
- Lab Call FY19 SI
 - Exclusive projects on dynamics and transients
- Lab Call FY22 SI
 - Exclusive Topic Area
- FY18 SI ASSIST FOA
- FY19 SI FOA
 - Exclusive Topic Area
- FY20SIFOA
- FY21SIFOA
 - (Grid-Forming Technologies Research Consortium)

Many Challenges (Dimensions) - Solutions

Whitaker (2018) https://doi.org/10.6084/m9.figshare.7140050.v2

Lab Call - FY22 - (one of the) Core Topic(s)

(OEDI – Solar Grid Integration Data & Analytics Library)

- Main goals
 - Provide access to data, data integration & mapping information/scripts
 - Physics-/network- & data-/ML-based solar analytics
 - Enable reproducible, robust, replicable and generalizable R&D in simulation and emulation of solar system integration
 - Encourage/enforce dataset format/I/O standardization
- Main deliverables
 - Generic and integrated datasets from four power systems operation technologies
 - s mart inverters/distributed energy resources management systems (DERMS)
 - phasor measurement units (PMUs) and data concentrators (DCs)
 - s mart meters/advanced metering infrastructure (AMI)
 - new sensor technologies
 - Benchmark analytics (physics and ML based algorithms)
 - Distribution state estimation
 - Optimization functions
 - Transients analysis
 - Data interfaces (CIM, OpenDSS, Gridlab-D)

Open Energy Data Initiative (OEDI)

