

# DPVProt and CIM-for-EMT Projects

SETO Webinar: "Let's work together on fast time-scale modeling of power systems with high distributed solar generation"

Thomas.McDermott@pnnl.gov

14:20-14:40 Eastern Time November 16, 2021



PNNL is operated by Battelle for the U.S. Department of Energy



#### DPVProt goal was to solve IEEE 1547-2018 protection issues in the near term, with new methods and applications on 2 utility feeders.



Issue: ride-through can make undervoltage trip ineffective for de facto fault detection.

<u>Team</u>: PNNL, ORNL, GA Tech, Dominion Energy Virginia, Chattanooga Electric Power Board <u>SETO Technology Manager</u>: David Walter References:

#### • Papers:

- https://www.osti.gov/biblio/1821480-protection-radialcircuits-high-penetration-distributed-photovoltaics
- https://ieeexplore.ieee.org/document/8980968
- Article: <a href="https://www.pacw.org/protection-of-distribution-circuits-with-high-penetration-of-photovoltaics">https://www.pacw.org/protection-of-distribution-circuits-with-high-penetration-of-photovoltaics</a>
- · Reports to appear on osti.gov:
  - "Protection of Distribution Circuits with High Penetration of Solar PV: Distance, Learning, and Estimation-Based Methods", October 7, 2021.
  - "Estimation Based Protection Relay--Application to Distribution System With High DER Penetration", May 2021.
- Code: https://github.com/pnnl/dpvprot



#### In this event, a "large" distributed PV site tripped on undervoltage, even though it was not necessary to clear a fault or island.



## Utility feeder models were converted to OpenDSS (phasor dynamics) and Alternative Transients Program (ATP) formats.



#### ATP simulations and field event records provided COMTRADE files to check relays and algorithms.





#### For efficiency, feeder models from CYMDIST and Synergi Electric were reduced in order using OpenDSS, then exported for EMT.



- OpenDSS: retained buses, load flow, short circuit.
- NetworkX: topology reduction, equivalent branches, heuristics for ATP load equivalents.
- Custom scripted: add the transient IBR models, run event simulations in ATP.
- Code and public models on https://github.com/pnnl/dpvprot, need ATP license to get supplemental code.



#### OpenDSS now includes fast-phasor inverter models that replicate first-order effects on fault current contributions.









Ref: "OpenDSS Tech Note: Voltage-Controlled Current Source"

#### OpenDSS now includes distance and incremental distance relay models, for simulating faults at 1-ms time steps.



## EPRI J1 feeder with Convolutional Neural Network relay based on 7000 ATP simulations; achieved greater than 95% testing accuracy.







#### Estimation-based protection discriminated internal and external faults, even with incomplete measurements.





### CIM-for-EMT builds on CIMHub, PGSTech modeling of the French 225/400-kV system, and new IEEE 1547-2018 models in CIM.





IEC 61970-302 CDV

Electric Utilities CIM-for-EMT

Software Vendors

#### **Project Outline**

- Automate modeling of the bulk system for EMT studies
- Standard interfaces for inverter based resource (IBR) models
- PacifiCorp and MISO providing data, testing, and review
- PoP: 10/15/2021 10/14/2022

https://www.ipstconf.org/papers/Proc IPST2017/17IPST099.pdf

Fig. 5 French 225 kV grid after CIM import in EMTP

## IEEE 1547-2018 interoperability tables have been translated to Unified Modeling Language (UML) for the CIM Dynamics Profile.





#### P1547.2/D6.2 (Annex F.2)

- Ballot pool forming now
- UML for 1547, 1547.1 tables
- Mappings to OpenDSS and GridLAB-D

Doc: https://gridappsd.readthedocs.io/en/develop/developer resources/index.html#der-models-from-ieee-1547-2018

## Transient feeder models through the Open Energy Data Initiative (OEDI) and Securing Solar for the Grid (S2G) lab call projects.

| Name        | Туре          | V <sub>LL</sub> [kV] | #Loads | #DER | Load [MW] | Notes                                                                                                       |
|-------------|---------------|----------------------|--------|------|-----------|-------------------------------------------------------------------------------------------------------------|
| IEEE 13x    | Radial        | 4.16                 | 9      | 4    | 3.4       | Common starting point; DER added for GridAPPS-D; EMT model built.                                           |
| IEEE 123x   | Radial        | 4.16                 | 114    | 14   | 3.8       | Includes 11 switches for radial reconfiguration; NREL added PV for GridAPPS-D.                              |
| EPRI DPV J1 | Radial        | 12.47                | 1384   | 13   | 11.6      | A real feeder monitored in the EPRI distributed photovoltaics project. EMT model built.                     |
| IEEE 9500   | Configurable  | 12.47                | 1275   | 12   | 12.3      | PNNL & WSU added substations, DER, switches and microgrid options to IEEE 8500. Derived from a real feeder. |
| IEEE LVN    | LV Network    | 13.20                | 624    | TBD  | 42.2      | Typical urban core distribution with one 208-V grid network and eight 480-V spot networks; EMT model built. |
| RIV 209     | Radial        | 12.47                | 101    | 1    | 9.6       | Time domain data; 1 MW PV; Chattanooga EPB feeder; EMT model built.                                         |
| SHE 215     | Radial        | 12.47                | 105    | 2    | 11.8      | Time domain data; 2 MW PV; Chattanooga EPB feeder; EMT model built.                                         |
| Louisa      | Radial        | 34.50                | 1527   | 1    | 27.0      | Time domain data; 20 MW PV; Dominion Energy Virginia feeder; EMT model built.                               |
| PNNL        | 2 Substations | 12.47                | 743    | 3    | 16.4      | 150-kW and 4-MW PV; 1-MW battery; City of Richland feeders.                                                 |
| Nantucket   | 8 Feeders     | 13.20                | 13,794 | 62   | 50.6      | 6-MW PV; 6-MW BESS; National Grid feeders.                                                                  |
| UDistrict   | 2 Feeders     | 13.20                | 582    | 4    | 10.1      | Avista feeders for WA Clean Energy Fund project.                                                            |

- Utility feeder models (shaded) are available now but will need new NDAs for the OEDI project.
- Public feeder models (unshaded) have no restriction for OEDI or S2G projects.