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• Technical Approach
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Overview

Better fuels. Better engines. Sooner.

NOTICE: This webinar, including all audio and images of participants 
and presentation materials, may be recorded, saved, edited, 
distributed, used internally, posted on DOE’s website, or otherwise 
made publicly available. If you continue to access this webinar and 
provide such audio or image content, you consent to such use by or on 
behalf of DOE and the Government for Government purposes and 
acknowledge that you will not inspect or approve, or be compensated 
for, such use.
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On-road transportation from light-duty to heavy-duty

MEDIUM / HEAVY-DUTY
• Near-term: Conventional diesel 

combustion
• Longer-term: Advanced compression 

ignition

LIGHT-DUTY
• Near-term: Turbocharged spark ignition 

combustion 
• Longer-term: Multi-mode combustion
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Toolkit Team goals
• Provide new insights on fuel-engine interactions through accurate computational fluid dynamic (CFD) calculations.
• Train lower fidelity yet accurate models that enable fuel-engine co-optimization leveraging high-performance 

computing (HPC) and machine learning (ML) acceleration techniques.
• Provide feedback to experimentalists to run new fuel-engine configurations for hypothesis testing and cross-

validation.

Mixed-mode cycleDeflagration cycle

Blue: deflagrative fronts
Red: auto-ignition fronts

Model Development and Validation Optimization and Data Analysis Development

data

Engine Experiments at all Labs
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Toolkit Team
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Tools developed leveraging HPC

• New multi-phase flow models: flash-boiling, nozzle flow-
spray coupling, multicomponent film vaporization, ducted 
fuel injection.

• New ignition/combustion models: robust combustion 
model for traversing through different combustion 
regimes, flame quenching, pre-spark heat release, pre-
chamber flows.

• Neural network for octane prediction from the detailed 
Co-Optima mechanism (~3,000 species).

• Laminar flame-speed solver for detailed Co-Optima 
mechanism (several orders of magnitude speedup over 
Chemkin-Pro).

• Chemkin-Pro engine model for spark-assisted compression 
ignition (SACI) multimode operation accelerated by 40x 
using Zero-RK to allow 50,000 fuel blends to be evaluated. 
Coupled with bilevel optimization.
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CFD-driven analysis of fuel-engine interactions

Fuel Engine

Multicomponent fuel surrogates 
Fuel physical properties 

(viscosity, density, HoV, etc. vs. T, P)
Fuel thermochemistry

(~ O(103) species, O(104) rxns)
Reduced kinetic mechanisms

(~ O(102) species, O(103) rxns)

Ignition delay (τig)
Laminar flame speed (SL)
φ sensitivity
RON/MON 

Real geometry 
Combustion mode 

(SI, SACI, HCCI, GCI, MCCI)
Operating conditions

(speed, load, etc.)
Boundary conditions

Experimental data
Physical Submodels

Spray dynamics
(Breakup, evaporation, etc.)

Wall heat transfer
Turbulent mixing

Turbulent combustion
(flame propagation, autoignition)

Computational efficiency

CFD
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• Neural network model uses detailed 
chemical kinetic ignition 
calculations with fuel properties to 
predict research octane number 
(RON) and motor octane number 
(MON).

• Improved prediction of non-linear 
blending for high performance fuels.

• Blind predictions made for six high-
performance fuel (HPF) 
blendstocks mixed with 5 new 
blendstocks for oxygenate blending 
(BOBs) with a matched octane 
rating.

APPROACH Neural network octane prediction model

Neural network performance on 95 new HPF + BOB blends
Mean Abs Error: 1.1 RON and 1.2 MON

M. McNenly et al. (LLNL) 8



• Fuels can be readily designed to 
match +30 experimental and 
numerical tests to assess gaps and 
sensitivities in predictive models.

• A posteriori evaluation of additional 
key fuel properties:

- Heat release measurements for 
rapid compression machine 
(RCM) and homogeneous 
charge compression ignition 
(HCC) engine.

- Flame speeds.

- Liquid properties (viscosity, 
surface tension, enthalpy of 
vaporization, thermal 
conductivity).

RESULTS Automated surrogate fuel designer

ANN = artificial neural network 𝑣⃗𝑣 = vector of targets
GPR = gaussian process regression Etot = total error of objective function 

PMI = particulate matter index

M. McNenly et al. (LLNL)
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• New models created for: 
laminar flame speed, 
counterflow diffusion, perfectly 
stirred reactors, micro-liter 
fuel tester, and multi-zone 
engines.

• Enables previously 
unattainable computations of 
flame speeds and extinction 
strain rates with detailed 
Co-Optima mechanism 
(>4000 species).

RESULTS Zero-RK allows virtual fuel exploration and  
mechanism development

Available at https://github.com/LLNL/zero-rkM. McNenly et al. (LLNL) 10



Predictive CFD model for SACI engines

CFD model developed and validated 
for SACI multimode engine. 
• Hybrid G-equation/finite rate chemistry 

combustion model with tabulated flame 
speed to predict flame propagation and 
end-gas auto-ignition simultaneously.

• Large eddy simulation (LES) to capture 
cycle-to-cycle variation.

• Model validated against first-principles 
simulations (DNS) and Sandia direct-
injection spark-ignition (DISI) optical 
engine data for both well-mixed (WM) and 
partial fuel stratification (PFS) assisted 
SACI operations.

APPROACH
Hybrid combustion model

Isosurfaces: Purple: stoichiometric
Blue: flames; Red: auto-ignition
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Chao Xu, Sibendu Som (ANL)
Experimental data: Magnus Sjoberg (SNL) 11



Unique capabilities of the 
model to capture rich physics 
in multi-mode SACI engine.
• Reliable spray prediction and 

validation.
• Detailed flame structure 

transitioning from diffusion to 
premixed flames revealed.

• Magnitude and sensitivity of 
nitrogen oxide (NOx )emission to 
engine operation mode well 
captured by detailed chemistry-
based NOx model (empirical 
Zeldovich model fails).

Capabilities in capturing detailed spray, 
flame structures, and emission

VALIDATION

Flame structure in PFS-SACI

-17.1-19.5-21.9

Bright: Diffusion flame; Blue: Premixed flame

RANS

LES

EXP

NOx emission in WM- vs. PFS-SACI

Spray patterns in PFS-SACI
CFDEXP
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Chao Xu, Sibendu Som (ANL)
Experimental data: Magnus Sjoberg (SNL)



Fuel property sensitivity - SACIRESULTS

HoV sensitivity

• Heat of vaporization (HoV) plays modifies unburned gas temperature and thus combustion phasing; 
HoV sensitivity of PFS operation is comparable with well-mixed charge operation.

• Laminar flame speed (SL) directly controls initial ramp-up of heat release rate in deflagration and 
thus affects subsequent auto-ignition; PFS operation is more tolerant to SL changes.

SL sensitivity

SI only SACI

Closed cymbols: 
PFS-SACI
(φ: 0.5, ST: -27 °CA)

Open symbols: 
well-mixed SACI
(φ: 0.55, ST: -57 °CA)
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Chao Xu, Sibendu Som (ANL)
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• Zero-RK models trained with 
detailed CFD can evaluate the 
engine-fuel effects of a virtual 
blend in minutes for multimode 
and ACI operation. 

• New features added:
- Flame propagation from experiment, 

CFD, or neural network. 
- Modified heat transfer and species 

mixing correlations possible with 
CFD turbulent properties .

- Multiple wall temperatures to capture 
hot spots.

- Evaporative charge cooling.

RESULTS Zero-RK engine model trained with CFD and 
experiments for big co-optimization searches

BLUE: flame 
propagation

zone 1: near wall

zone 20: hottest 
end-gas

RED: sequential 
auto-ignition

in end gas

CFD - C. Xu, et al., ICEF2019-7265

M. McNenly et al. (LLNL), Chao Xu (ANL) 14



• New approach to capture pre-spark 
heat release (PSHR) using CFDs.

• Developed and validated combustion 
model best practices to capture the 
onset of PSHR accurately.
 Engine geometry and experimental 

data from ORNL’s LNF engine using 
Co-Optima alkylate and E30 fuels.

 Integration of chemistry mechanisms 
by LLNL; validation of spray setup 
against experimental data by Sandia.

• Previous-cycle residuals are key to 
the occurrence of PSHR.
 Chemistry solver must be kept active 

during gas exchange.

Computational domain Model validation

Spray model calibration

APPROACH Predicting pre-spark heat release

Hengjie Guo, Roberto Torelli (ANL)
Spray data: Lyle Pickett (SNL)
Engine data: Jim Szybist (ORNL)
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• CFD revealed PSHR begins in fuel-
lean regions. Later, its effect 
becomes more significant in the fuel-
rich regions.

• Pressure-temperature (P-T) 
trajectories explained the trends 
observed for the different PSHR 
intensities.

• In-depth analysis reveled the effect of 
fuel properties: HOV, laminar flame 
speed, saturation pressure, liquid 
specific heat.

[1] Guo et al, SAE Technical Paper, 2021, doi:10.4271/2021-01-0400
[2] Guo et al, IJER, 2021, doi:10.1177/14680874211044110

P-T trajectory analysisDynamics of PSHR

Fuel property effects

RESULTS Pre-spark heat release & fuel effects
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• Cummins ISB 6.7L single-cylinder 
(MD) engine with step-lipped bowl 
and 20:1 compression ratio used 
for experiments and simulations.

• Physical property effects initially 
explored through development of 
three diesel fuels (#2, #1, and #0) 
with increasing volatility but same 
reactivity.

• Diesel mechanism 319 species 
1,797 reactions (including PAH and 
NOx chemistry) developed by Co-
Optima team.

APPROACH   Link fuel properties to NOx emissions
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Flavio Chuahy (ORNL) 17



• Large changes in distillation curve 
resulted in only small changes to 
NOx.

• Larger changes seen for later 
injection timings due to later 
combustion phasing and sensitivity 
to mixture formation.

• Changes in physical property had 
small impact as a control lever for 
NOx at low-load engine operation.

RESULTS       Effect of fuel volatility on NOx emissions

CO emissionsNOx emissions
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• Density, surface tension, viscosity, 
thermal conductivity, HOV, vapor 
pressure and specific heat were 
independently modified by a large 
amount.

• Effect on heat release rate was 
observed for HOV, vapor pressure, 
density and specific heat changes.

• Changes in mixture formation were 
substantial, lower density fuel resulted 
in richer mixtures and higher NOx (as 
an example).

• However, changes in NOx were 
minimal for all property changes, even 
when property changes were large.

RESULTS       Changes in individual fuel physical properties
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• ANL-CAT HD engine under low-load GCI.

• 240-species LLNL TPRF-E mechanism 
includes PAH and NOx chemistry together 
with hybrid method of moments (HMOM) 
soot model .

• Four fuel stratification levels considered 
with start of ignition (SOI) timings of -21/-
27/-36/-45ATDC.

• SOI @ -36 CAD ATDC: Cooler in-cylinder 
conditions at SOI  significantly more fuel 
film mass  higher soot emissions than 
SOI @ -27 CAD ATDC.

• SOI @ -45 CAD ATDC: Longer mixing time 
 more homogeneous mixtures & OH 
formation  more soot oxidation  lower 
soot emissions than SOI @ -36 CAD.

Fuel property effects on  HD gasoline 
compression ignition

Component Vol %

Ethanol 9.98

Toluene 29.91

N-Heptane 21.03

Iso-Octane 39.08

RD5-87 Surrogate (from LLNL)

APPROACH

λ= 3.2
Pinj= 500 bar
Pint= 1 bar
Tin= 1450 C

Krishna Kalvakala, Pinaki Pal (ANL)
Expt. data from Chris Kolodziej (ANL)
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• E30 and E100 exhibit retarded 
combustion phasing relative to E10 
due to fuel chemistry.

• Soot emissions show non-monotonic 
trend w.r.t. ethanol content as a 
consequence of strong coupling 
between fuel chemistry and physical 
properties (mainly HOV and viscosity).

• E30: Higher fuel film mass (due to 
higher HOV) + higher acetylene 
formation (due to more ethanol) 
high soot emissions than E10.

• E100: Higher fuel film mass (due to 
higher HOV) but very low sooting fuel 
(no aromatic content in E100)  lower 
soot emissions than E10.

Impact of gasoline-ethanol blending on 
combustion phasing and NOx/soot emissionsRESULTS

Solid: E10
Dashed: E30
Dash-dot: E100

Krishna Kalvakala, Pinaki Pal (ANL) 21



• Proceed with a methodology that 
minimizes the dependence on 
calibration from conventional 
fuels.

• Create a small number of 
validated case studies using the 
real properties of the 
liquid/vapor/gas system (with SNL 
research code CLSVOF).

• From data, develop sub-models to 
cover gaps found in the 
engineering-level simulations.  

Connect thermo-physical properties to spray 
characteristics via high-fidelity simulations

Is
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0

APPROACH

• Many fuel blends do not behave like ideal mixtures.

• The primary atomization process is non-linear: focus on how 
sprays are affected by thermo-physical properties.

Marco Arienti et al. (SNL) 22



• The new thermally-limited bubble 
growth (TLBG) model helps 
distinguishing the effect of fuel 
composition on spray cone angle.

• The new model is available in 
CONVERGE as user-defined 
function.

• More progress possible by correcting 
the sound speed evaluation of the 
liquid-vapor mixture.

Improved sensitivity of CFD flash-boiling model 
to fuel blend composition
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Temperature Temperature

TemperatureTemperature

RESULTS

Arienti et al., “A thermally-limited bubble growth model for the relaxation time of 
superheated fuels,” International Journal of Heat and Mass Transfer 159 (2020) 120089.

Marco Arienti et al. (SNL) 23
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• Observed differences between two 
two fuels in spray angle and jet 
structure; much enhanced 
evaporation with E30. 

• Differences are particularly clear 
toward the end of injection as hot 
gas is entrained.

• But with E30 the temperature 
increase at the liquid surface is 
mitigated by the cooling effect of 
evaporation.

RESULTS Case study: Differences between neat 
iso-octane and E30 for GDI at end of injection

1. Arienti et al., ”Effects of detailed geometry and real fluid thermodynamics on 
Spray G atomization” Proceedings of the Combustion Institute 2021.

2. Arienti and Wenzel, “Detailed evaporation modelling for gasoline direct 
injection: iso-octane vs. E30,“ ACS Fall 2021.
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vapor
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• Optimization target: Maximize 
robustness of fuel mix.

• Constraint on RON: 80 to 98.5.

• 5 trials with the GP optimizer.

• 9 fuels components.

• Different fuel compositions lead to 
similar robustness -> multiple similar 
local optima present.

• GP finds better solutions faster than 
evolutionary algorithm.

RESULTS Improved optimization tools for fuel search

Juliane Mueller (LBNL) 25



Developed framework to predict effect of fuel type on 
fuel economy ─ stoichiometric and multimode

Gaussian 
Process 

Regression 
model

Fuel-Flow Rate Map

DOE w/ GT-Power model
Stoichiometric Operation

Regression model

KL-CA50

Experimental engine data for 
many fuels, operating conditions 

& engine thermal states

Drive Cycle
Simulation

Determine knock limits 
for hypothetical fuels

Fuel Consumption
Rate
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• Downsizing provides fuel efficiency 
benefits for FTP-75 and HWFET, but 
not for US06.
 Higher IMEP ⇒ more knock limited.

Fuel effects on the benefit of enhanced thermal 
management

RON100 – S2 (Hot)
US06

4 cylinders

3 cylinders

Here, the S=12 fuels provide greatest benefit.

RESULTS
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• Autonomie predicts that enhanced thermal 
management provides most benefit for 
more aggressive driving (US06).

M. Sjöberg, N. Kim (SNL)
N. Killingsworth, M. McNenly (LLNL)
J. Mueller (LBNL)
R. Vijayagopal (ANL)



• Multimode shows essentially no 
benefit for US06, which uses 
higher engine speeds.

RESULTS
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Benefit of multimode varies with drive cycle and fuel type

RON90-S2    
US06
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• Multimode operation provides 9 
– 14% MPG Gains for HWFET & 
UDDS cycles.

• Here, the higher SACI load limit 
of high-RON high-S fuels 
provides benefits.

RESULTS
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Nick Killingsworth (LLNL)
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Some takeaways

• Initially computational tools to study physics at the fuel-engine interface for LD 
and HD were not available.

• Physics based models/sub-models for improved predictions of fuel-engine 
phenomena developed and implemented in industry standard-use software.

• Reduced kinetic mechanisms for several molecules available for CFD.
• Engine models for multiple platforms such as CFR, CAT, Navistar, Cummins, 

Ford, and GM, have been developed and validated (at different levels of fidelity) 
and may be available for public dissemination.

• Lower-order open-source tools also developed and available.
• Initiation of PACE (computationally focused) accelerated Toolkit Team’s 

prediction capabilities.
• Additional three years would have enabled us to perform true co-optimization.
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