Stakeholder Round Table: Overcoming Market, Regulatory, and Finance Challenges for Long-Duration Storage Technologies

LONG DURATION ENERGY STORAGE : AN INTRODUCTION

Office of the UNDER SECRETARY FOR SCIENCE AND ENERGY

LONG DURATION STORAGE SHOT TARGET

Affordable grid storage for clean power – any time, anywhere

Energy Storage Cost and Performance

Technology	Durations Considered
Lithium-ion	2, 4, 6, 8, 10
Lead-acid	2, 4, 6, 8, 10
Vanadium Redox Flow Battery	2, 4, 6, 8, 10
Pumped Storage Hydropower	4, 10
Compressed Air Energy Storage	4, 10
Hydrogen	4, 10

2020 Grid Energy Storage Technology Cost and Performance Assessment

https://www.energy.gov/energy-storage-grand-challenge/downloads/2020-grid-energy-storage-technology-cost-andperformance

LDES: Duration

LDES Shot Duration Floor: 10 hours

LDES Duration Literature Review ¹				
Duration (Hours)	Total #	Greatest citation count		
≥4	13	Journal (tech. focus)		
≥6	1	U.S. Dept. of Energy		
≥8	2	Utility/ Trade/ Consultant & Other		
≥10	15	Journal (grid focus)		
Beyond diurnal	7	Journal (grid focus)		

ENERGY STORAGE

DAYS Advanced Research Projects Agency– Energy (ARPA-E) defines LDES as 10–100 hours² \rightarrow growing use, and support, of the >10 hours definition¹

> ¹: Paul Denholm et al., National Renewable Energy Laboratory ²: DAYS (Duration Addition to electricitY Storage) <u>https://arpae.energy.gov/technologies/programs/days</u>

Perceptions of LDES duration varied considerably, from >4hrs to >24 hrs. >24hrs identified most often (~30%)³

³: Clifford K. Ho, Sandia National Laboratories, <u>https://www.sandia.gov/ess-ssl/ldes/</u>

Necessity: Storage Enables Grid Decarbonization

23 GW. 8-12 hrs Providing flexibility to the nuclear fleet Mostly pumped storage 250 GW >30 GW. 1 hr Phase 1 Deployed in the U.S Displace fossil generators to provide Essential Reliability Services Mostly Li-lon • 5¢/kwh LCOS @ ~\$200/kwh Li battery equivalent capex 30-100 GW. 4-6 hrs Phase 2 · Displace thermal generators to provide peaking capacity Larger opportunities for thermal, flexibility, flow batteries 100 GW • 5¢/kwh LCOS @ ~\$100/kwh Li battery equivalent capex **GW Storage** 100+ GW. 10 hrs Phase 3 Diurnal energy time shifting for very high renewable generation 80 GW • Continued opportunities for flow, chemical (e.g. H₂) • 5¢/kwh LCOS @ ~\$10-\$35/kwh Li battery equivalent capex 2020 Phase 4 250+ GW, 12+ hrs 20 GW Multiday to seasonal energy time shifting for economy-wide decarbonization Non-battery architectures likely 1 hr 6 hrs Exceptionally low capex required to achieve 5¢/kwh LCOS

Adapted from https://www.nrel.gov/analysis/storage-futures.html

Cumulative Deployment by Year to Meet Climate Goals

LDES: Valuation Approaches

Two main approaches for valuation of energy storage:

- 1. Price-taker approach: typically applied for small ES installations, assuming that they are not likely to affect market prices
- 2. System analysis approach: typically applied for larger ES projects whose operation may affect market prices. Often referred to as a price-influencer, or price-maker approach.

The challenge is how to properly estimate the value for the use cases and services LDES can provide.

Temporal Resolution	Value Streams	Valuation Strategy and Quantification	Non-Market Cost Evaluation
Varying time scales of costs, benefits, and generation	Selection of streams	Selection of methods	Often evaluated with
	vastly impacts results,	impacts ease of use	custom analysis
	with limited guidance	and accuracy with	techniques → prevents
	on selection → limited	similar challenges to	comparison and limits
	consistency	value stream selection	decision-making

Valuation Gaps:

Vladimir Koritarov et al., *Pumped Storage Hydropower Valuation Guidebook – A Cost-Benefit and Decision Analysis Valuation Framework*, Water Power Technologies Office, March 2021. <u>https://www.energy.gov/eere/water/pumped-storage-hydropower-valuation-guidebook-cost-benefit-and-decision-analysis</u>

LDES: Transmission

As a dual-use (transmission and generation) asset, energy storage will likely have significant opportunities to provide energy services in the market, thereby generating offsetting revenue that can be shared with customers to reduce system costs¹

Reliability/Resilience Storage Support²

Storage may be deployed <u>as</u> transmission or <u>in place of transmission</u>

- ES can maintain voltage, manage power flows, and absorb excess power
- Alleviate thermal overloading on transmission lines
- Extend the life of existing assets

Dual-Use Storage Implementation Needs²

- Establish clear, transparent processes for the proposal and study of energy storage as a dual-use asset
- Prepare a reasonable forecast of future market revenues to quantify the net present cost of the asset to transmission customers
- Establish market participation windows in advance
- Create flexible market products and resource definitions
- Balance cost recovery mechanisms to incent market participation

²: Twitchell J.B. 05/26/2021. "Energy Storage as a Transmission and Dual-Use Asset." Presented by J.B. Twitchell at Wisconsin Public Service Commission Workshop, Online Conference, United States. PNNL-SA-162957.

ESGC Policy and Valuation Track Lab Roster

Lab	Name	Lab	Name		
PNNL	Rebecca O'Neil (lead coord), Jeremy Twitchell*	ANL	Vladimir Koritarov (co-coord), Patrick Balducci*		
BNL	Amy Marschilok	ORNL	Hope Corsair		
INL	Thomas Mosier	NETI	Amanda Harker-Steele, Peter		
LANL	Adam Mate, David Fobes		Balash, Ivonne Pena-Cabra		
LBNL	Pete Cappers	SNL	Ray Byrne, Cliff Ho*		
LLNL	AJ Simon	SRNL	Will James		
NREL	Nate Blair, Paul Denholm*	SLAC	Victoria Lee		
DOE Track Lead – Paul Spitsen, Strategic Analysis, EERE					

Any Questions?

Thank you!

Noel Bakhtian, Lawrence Berkeley National Laboratory <u>noel@lbl.gov</u> Mark Ahlstrom, NextEra <u>mark.ahlstrom@nexteraanalytics.com</u> Richard Baxter, Mustang Prairie <u>rbaxter@mustangprairie.com</u> Jason Burwen, Energy Storage Association j.burwen@energystorage.org Julia Prochnik, Long Duration Energy Storage Association of California julia@jasenergies.com Rebecca O'Neil, Pacific Northwest National Laboratory <u>rebecca.oneil@pnnl.gov</u> Debbie Lew, Energy Systems Integration Group <u>debbie@esig.energy</u>

