

Understanding Your Utility Bills:

Christopher Price Alexandra Botts Senthil Sundaramoorthy Subodh Chaudhari Thomas Wenning

This Zoom call is being recorded and may be posted on DOE's website or used internally. If you do not wish to have your voice recorded, please do not speak during the call or disconnect now. If you do not wish to have your image recorded, please turn off your camera or participate only by phone. If you speak during the call or use a video connection, you are presumed to consent to recording and to the use of your voice or image.

Energy Awareness Month

U.S. DEPARTMENT OF

Energy Awareness Month

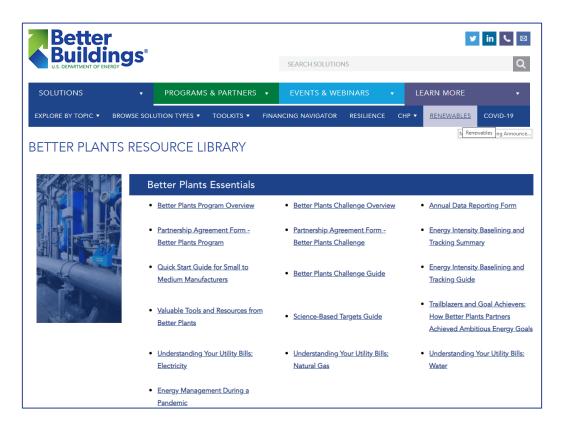
Webinar Series with DOE's Better Plants Program

Oct 7th - 28th, 2021 1:00pm US-EST / 11:00am US-EST

- Saving Energy For Small to Medium Manufacturers
- Energy Intensity Baselining and Tracking
- Understanding your Utility Bills: Electric, Water, Natural Gas
- Lessons from Better Plants
 Goal Achievers

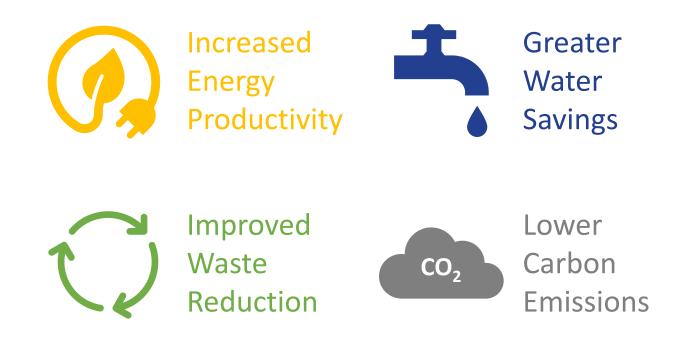
Yesevents.com/EnergyAwareness

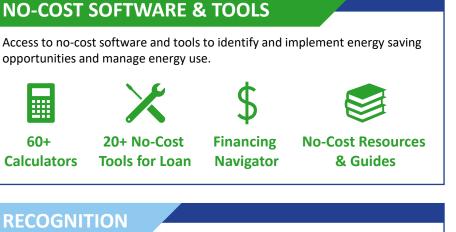
Energy Awareness Month Webinar Schedule


Date	Title
Thursday, Oct 7, 1pm – 2pm ET:	Quick Start Guide to Saving Energy for Small to Medium Manufacturers
Tuesday, Oct 12, 11am – 12pm ET	The Updated Energy Intensity Baselining and Tracking Guide
Thursday, Oct 14, 1pm – 2pm ET	Understanding Your Electricity Bills
Tuesday, Oct 19, 11am – 12pm ET	Understanding Your Natural Gas Bills
Tuesday, Oct 26, 11am – 12pm ET	Understanding Your Water Bills
Thursday, Oct 28, 1pm – 2pm ET	Lessons Learned From Goal Achievers

Yesevents.com/EnergyAwareness

- Have questions? Please use the Zoom chat!
- Want to learn more? <u>energy.gov/BBSC</u>


Dr. Christopher Price Oak Ridge National Laboratory


Helping manufacturers and other industrial partners save money and improve their resource efficiency.

Better Plants Resources

TRAINING & EDUCATION

In-Plant Trainings Conducted to Date

Multi-day trainings for staff to identify, implement, and replicate energy savings projects.

No-Cost Webinars & Growing

RECOGNITION

49 Better Project & Better Practice Winners

For innovative and industry-leading accomplishments in implementing and promoting company-wide practices, principles, and procedures of energy management, as well as improvement projects at individual facilities.

> National Recognition 350+ in Media and Online

59

Goal

Achievers

INNOVATION & LABS

National Labs Across the Country

Partnerships with the National Labs spurs innovation.

> Field Validation

Lab Technology Days

Sneed peek at early-stage **R&D** Technologies

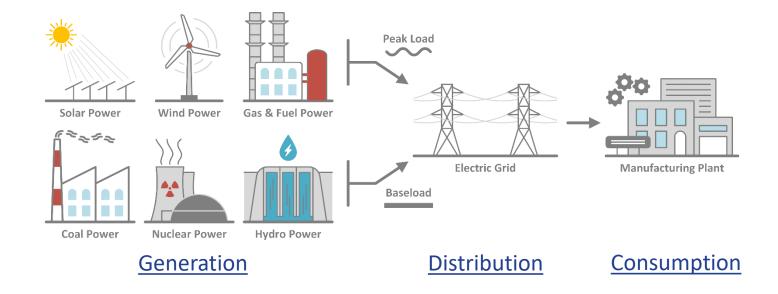
A new pilot for partners to accelerate the voluntary adoption of costeffective, high-impact technologies while reducing adoption risks.

250+ partners across the United States and territories

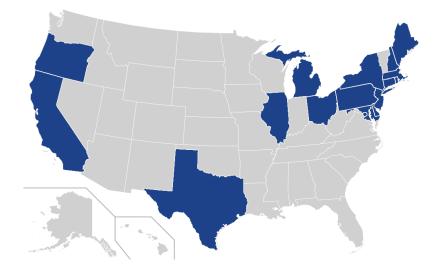


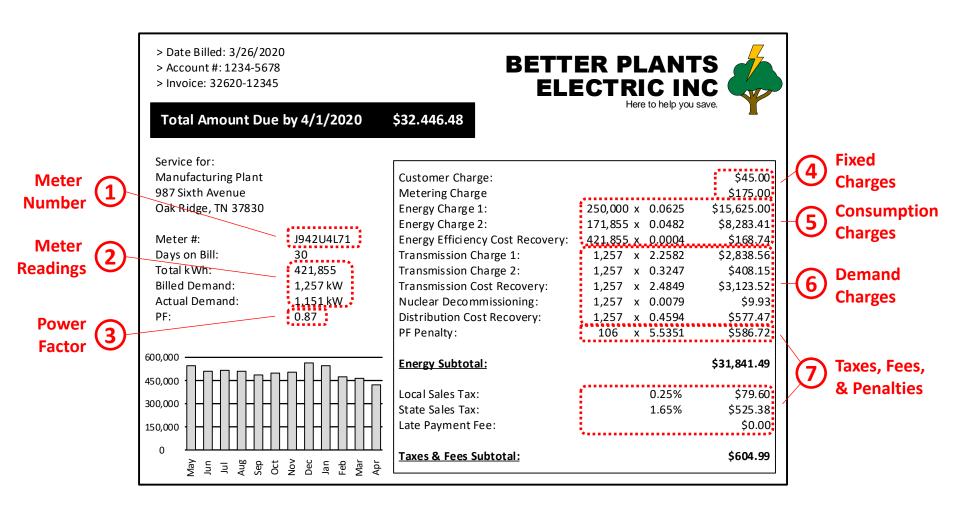
Understanding your Utility Bills

Just one in a series of guidance documents:

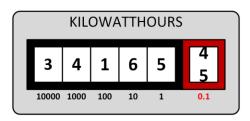

- Electricity bills can be hard to decipher
- Some bills can be very detailed, some are very short
- Some charges appear each month, some do not
- Understanding your bills and why your utility charges different fees is important to save energy and cost
- The guide covers the basics of electricity bills:

How is Electricity Generated?


- Electricity comes from many different sources
- The mix of electricity sources is changing
- Power is delivered to your facility through the *Grid*
- Generating costs are different for each source


What are Deregulated Power Markets?

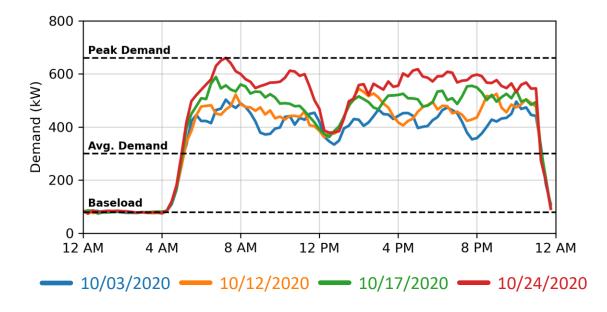
- *Regulated Power Markets*: Utilities own and maintain all the equipment from generator to your meter
- **Deregulated Power Market**: Generators and distributors are separate entities
- Deregulation is meant to:
 - (1) Lower energy costs through competition
 - (2) Promote green energy
- May get multiple bills
- Currently 15 States + DC


Key Components to Your Electricity Bills

- Electricity *Consumption* or *usage* is the total amount of electricity your facility uses to make products
- Measured in kilowatt-hours (kWh) which is equal to 1 kilowatt of power sustained for 1 hour
- Can appear on your bills as energy charge, energy cost, delivered energy cost, etc.
- Billed at a rate (\$/kWh) determined by your contract

- Industrial facilities also charged for *Electrical Demand*
- Demand measures the rate of electricity consumption
- Calculated by averaging consumption over a window:

 $\frac{25 \text{ kWh}}{15 \text{ minutes}} \times \frac{60 \text{ minutes}}{1 \text{ hour}} = 100 \text{ kW}$


- More demand means more grid infrastructure your utility must build and maintain to deliver power
- Can appear on your bills as demand charge, demand cost, transmissions and delivery (T&D) charge, etc.

Types of Demand Charges

- Your facility's demand will vary over a typical day
- You are billed based on the monthly *Peak Demand*
- One demand spike can set your charges for months!

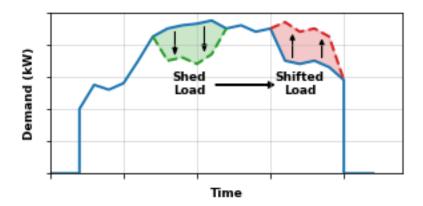
- Actual Demand is observed peak from the last month
- **Billed Demand** is an adjustment to your real demand established by clauses in your electricity rate schedule

Ratchet Clauses

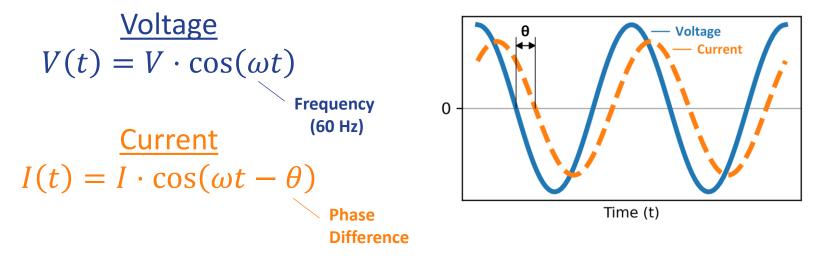
Coincident Peak (CP) Clauses

"80% of max demand from last 12 months"

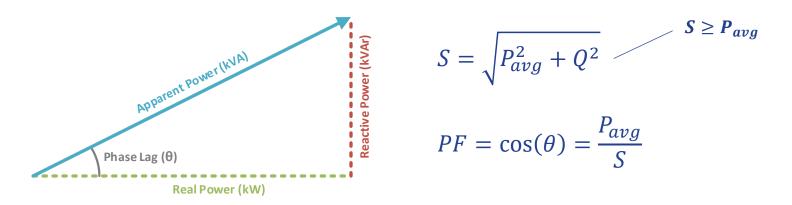
"Facility demand when grid hits its peak"



- Lowering your demand costs means managing your facility's load profile
- Two main strategies:
 - 1) Load Shedding: A temporary reduction in demand
 - 2) Load Shifting: A transfer of load to off-peak hours


 Some utilities offer *Demand Response* incentives to shed or shift load during high grid stress events

- The way AC power interacts with your equipment affects how much power your utility must deliver
- This effect is captured by your *Power Factor (PF)*
- Most utilities will penalize you for having a low PF
- PF is inherent to AC circuits, but it can be managed!

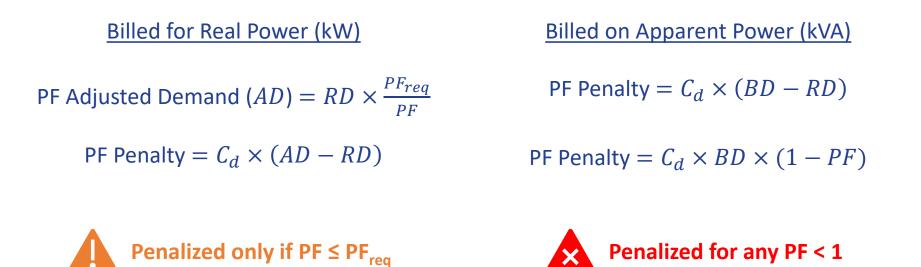


Power:

$$P(t) = V(t) \cdot I(t) = \dots \text{ Math! } \dots =$$

$$P(t) = \underbrace{P_{avg} \cdot (1 + \cos(2\omega t))}_{\text{Real Power}} + \underbrace{Q \cdot \sin(2\omega t)}_{\text{Reactive Power}} + \underbrace{Q \cdot \sin(2\omega t)}_{\text{(kVAr)}}$$

- Both real and reactive power are required to run your facility
- Utility must deliver **Apparent Power** (S) which is related to PF



The lower your PF, the more apparent power your utility must deliver!

- PF is usually listed on your bills
- PF penalties are rarely clearly listed on your bills
- Penalties depend on how you are billed for demand:

- Nearly all facilities have low PF because of large motors used in their production process
- Windings act as large inductors causing current lag
- Install capacitor banks to offset inductive loads
- Two types of capacitors:
 - 1) Static (\$)
 - 2) Dynamic (\$\$)
- Fix baseload phase difference with static capacitors
- Fix remaining difference with dynamic capacitors

Wikimedia Commons

How Much Does Low PF Cost?

- Consider a facility with an average $PF_{av,g} = 0.85$
- Demand cost is \$8/kW with not ratchet clause
- Utility requires a minimum $PF_{req} = 0.95$
- Average billed demand is $BD_{avg} = 850 \ kW$

Real Demand
$$(RD_{avg}) = BD_{avg} \times \frac{PF_{avg}}{PF_{reg}} = 761 \, kW$$

PF Penalty = $C_d \times (BD_{avg} - RD_{avg}) \times 12 =$ **\$8, 544**/*yr*

- Several other charges can be listed on your bills
- *Riders* are modifications to your rate structure
- Some riders apply only certain months
- Usually very descriptive and for specific purposes

Renewable Energy Development Fund

Nuclear Decommissioning Charge

Energy Efficiency Cost Recovery Factor

Fuel Cost Recovery Factor

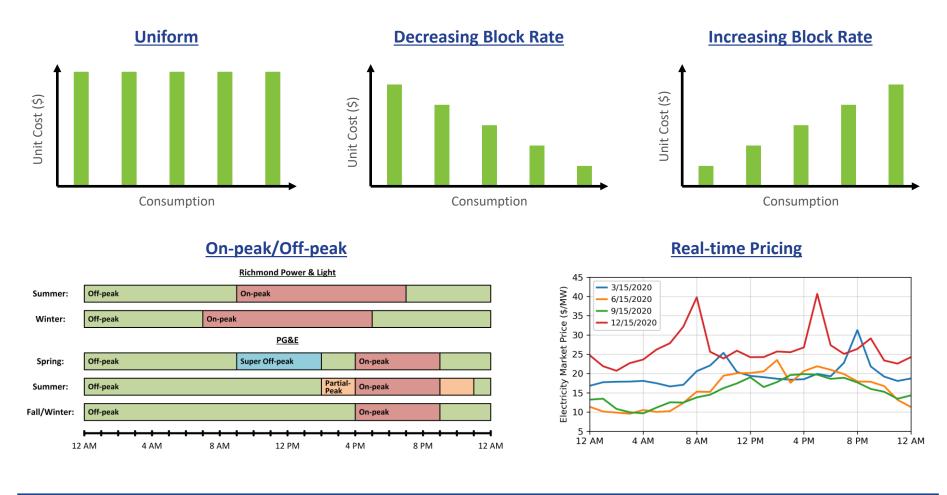
- Some charges on your bills may not be related to consumption or demand
- Fixed charges are built into your rate structure but ensuring you have the right schedule can save costs
- Some charges can be avoided with a little planning

Customer Fees Metering Fees Etc.

Late Payment Fees Insufficient Funds Fees Etc.

Local Taxes State Sales Tax = Etc.

Some states allow sales tax exemptions for manufacturers under certain conditions!


- *Rate Schedules* are collections of pricing structures offered by your utility
- Choosing the right rate structure is critical for minimizing energy costs

Rate Schedule Requirements		Rates
Exterior Lighting Outdoor areas not covered by street lighting.		Flat Rate by Lamp Type
Small General Service	Less than 10 kW of monthly demand.	Service Charge: \$15.25/customer First 600 kWh: \$0.03225/kWh All other kWh: \$0.02076/kWh
Medium General Service	Greater than 10 kW of monthly demand.	Service Charge: \$43.00/customer Demand Charge: \$2.20/kW First 10,000 kWh: \$0.03438/kWh All other kWh: \$0.02927/kWh
Large General Service	Demand greater than 100 kVA but less than 3,000 kVA.	Service Charge: \$156.00/customer Demand Charge: \$6.72/kVA Energy Charge: \$0.00787/kWh

There are several common pricing options:

Blended Cost:

- Quick and easy way to estimate costs
- Only estimates consumption savings

 $C_{blend} = \frac{Total \ Electricity \ Costs}{Total \ Energy \ Consumption}$

Marginal Cost:

- More detailed estimate of costs (consumption + demand)
- Requires knowing your rate structure

 $C_{mrg} = Energy Charge 1 + Energy Charge 2 + \cdots$ $D_{mrg} = Demand Charge 1 + Demand Charge 2 + \cdots$

Your Cost of Electricity

Identify all the charges and how they are assessed...

 > Date Billed: 3/26/20 > Account #: 1234-56 > Invoice: 32620-1234 Total Amount Du 	78 45		ER PLANT ECTRIC IN Here to help you	
Service for:				
Manufacturing Plant		Customer Charge:		\$45.00
987 Sixth Avenue		Metering Charge		\$175.00
Oak Ridge, TN 37830		Energy Charge 1:	250,000 x 0.0625	\$15,625.00
		Energy Charge 2:	171,855 x 0.0482	\$8,283.41
Meter #:	J942U4L71	Energy Efficiency Cost Recovery:	421.855 x 0.0004	\$168.74
Days on Bill:	30	Transmission Charge 1:	1,257 x 2.2582	\$2,838.56
Total kWh:	421,855	Transmission Charge 2:	1,257 x 0.3247	\$408.15
Billed Demand:	1,257 kW	Transmission Cost Recovery:	1,257 x 2.4849	\$3,123.52
Actual Demand:	1,151 kW	Nuclear Decommissioning:	1,257 x 0.0079	\$9.93
PF:	0.87	Distribution Cost Recovery:	1,257 x 0.4594	\$577.47
		PF Penalty:	106 x 5.5351	\$586.72
		Energy Subtotal:		\$31,841.49
		Local Sales Tax:	0.25%	\$79.60
300,000	1	State Sales Tax:	1.65%	\$525.38
150,000	┥┝┥┝┥┝┥┝┥┝┥┝	Late Payment Fee:		\$0.00
Aug Sep	Oct Nov Dec Jan Mar Apr	Taxes & Fees Subtotal:		\$604.99

Consumption Charges (per kWh)

- Energy Charge 1: \$0.0625
- Energy Charge 2: \$0.0482
- EE Cost Recovery: \$0.0004

Demand Charges (per kW)

- Transmission Charge 1: \$2.2582
- Transmission Charge 2: \$0.3247
- TRNS Cost Recovery: \$2.4849
- Nuclear DECOM: \$0.0079
- DISTRO Cost Recovery: \$0.4594

Other Charges:

- PF Penalty
- Customer & Metering Fees
- State and Local Sales Taxes

Blended Cost:

<i>c</i> –	Electricity Costs	\$32,466.48	\$0.077
$C_{blend} =$	Energy Consumption	421,855 <i>kWh</i>	kWh

Marginal Costs:

• For 4 months, consumption never reaches the block 2 rate...

$$C_{mrg,yr} = \frac{4}{12} \times EC1 + \frac{8}{12} \times EC2 + EECRF$$

= $0.33 \times \frac{\$0.0625}{kWh} + 0.67 \times \frac{\$0.0482}{kWh} + \frac{\$0.0004}{kWh} = \frac{\$0.0530}{kWh}$
$$D_{mrg} = TC1 + TC2 + TCRF + NDC + DCRF$$

= $\frac{\$2.2582}{kW} + \frac{\$0.3247}{kW} + \frac{\$2.4849}{kW} + \frac{\$0.0079}{kW} + \frac{\$0.4594}{kW} = \frac{\$5.5351}{kW}$

U.S. DEPARTMENT OF

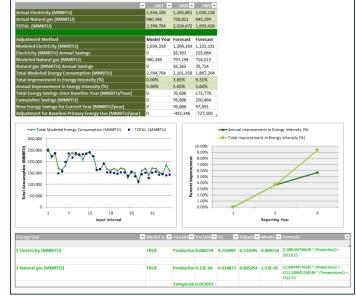
Opportunities for Cost and Energy Savings

Demand Management

Power Factor Correction

- **Recreating Your Bills**
- State Sales Tax Exemptions
- Avoiding Late Fees
- **M** Tracking Energy Consumption
- Realization/Load Factor Analysis

Tracking Your Electricity Usage


- DOE offers software tools to track energy usage
- Identify trends, anomalies, and opportunities

OE Adv	anc	ed Manufacturing Office					QUESTIONS, CO	MMENTS, or ISSUES	
ner	av	Footprint [v1	1.11				email: eGuidefe	edback@ee.doe.go	
		e DOE Advanced Manufacturing Office	-						
Descrip	otion								
The En	ergy	Footprint tracks energy cons	umption by source	e, factors a	ffe	ecting to en	ergy consumption, and spe	cific energy	
uses or	n a m	onthly basis for 1 or multiple	e years.						
		Plant Name			_			-	
					-				
		Additional Details							
		Worksheets (click	to goto)					_	
		Energy Consumption	Tables Charts	ECvsR	v		First Month Jan		
		Relevant Variables	Tables Charts	Charts			Current Year* 2015	*of first month	
		Energy Uses	Tables Charts			N	umber of Years 3		
		EnPI Table	Table						
		Select Energy So	ources				Select Relevant Variab	les Tracked	1
Selec	t	Type	Units	# Used		Select	Type	Units # Used	1
locked		Electricity	kWh site	1			Production	count	1
		Electricity Demand	kW				Heating Degree Days	HDD 1	
		Electricity Fees	none				Cooling Degree Days	CDD	
locked		Natural Gas	Dtherm	1				count	
		LPG	MMBtu				Production Hours	hours	
	-	#1 Fuel Oil	MMBtu				Facility Operating Hours	hours	
		#2 Fuel Oil	MMBtu				Water Usage	Tgal	
		#4 Fuel Oil	MMBtu				Occupancy	count	
		#6 Fuel Oil Coal	M M Btu M M Btu				Occupancy	misc	
1	_	Wood	MMBtu MMBtu			_	custom 2 (edit) custom 3 (edit)	misc	1
1	_	Paper	MMBtu				custom 4 (edit)	misc	1
		Other Gas	MMBtu				custom 5 (edit)	misc	
1		Other Gas Other Energy	MMBtu				used Related Factors cannot		1
1		custom 1 (edit)	none	1			wase were text or a Calified	or and the a	1
1		custom 2 (edit)	MMBtu				MMBtu		
1		custom 3 (edit)	none				(primary)		
1		active Energy Sources cannot b		·	1	kWh site =	0.010228 FOR REFE	RENCE: These energy	
·		<i>u,</i>				1Therm =		factors are used only	
						1 Dtherm =		e the total primary	
		n: 1.1							
v	ersic					1 MMBtu =	1 energy con	nsumption and are not	

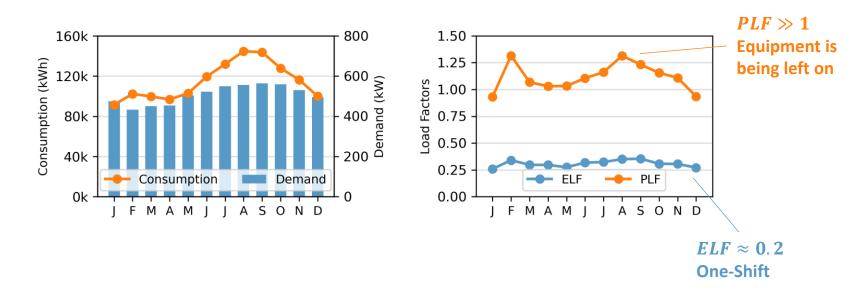
Energy Footprint Tool

General Energy Performance Results

The table below shows the unadjusted and adjusted energy consumption and intensity data. The models used to adjust the data for each energy source are shown below the plots and on the individual sheets for each energy source. Note that the tool selects the model that is appropriate for the SEP Program and has the highest adjusted R-squared value.

Energy Performance Indicator Tool

- Billing periods depend on when the utility reads your electricity meters
- Normalizing electricity data for billing periods is known as *Calendarization*
- Divide consumption by days on bill and allocate energy to calendar month


 Electrical Load Factor (ELF): Ratio of monthly kWh consumption and maximum possible consumption

 $ELF = \frac{Consumption}{Demand \times Billing Hours}$

 Production Load Factor (PLF): Ratio of monthly kWh consumption and maximum production consumption

 $PLF = \frac{Consumption}{Demand \times Production Hours}$

U.S. DEPARTMENT OF

Additional Questions:

- Pete.Langlois@ee.doe.gov
- Pricecr@ornl.gov
- <u>Eli.Levine@ee.doe.gov</u>

Reminder:

- Next webinar is Thursday, Oct. 14th from 1-2pm ET
- Understanding Your Electricity Bills
- Register at Yesevents.com/EnergyAwareness

