Lab Embedded Entrepreneurship Programs
Long Duration Storage Shot Summit:
Lab-Embedded Entrepreneurship Program Session

manufacturing.energy.gov
Lab-Embedded Entrepreneurship Program

Empower innovators to mature their ideas from concept to first product, positioning them to align with the most suitable commercial path to bring their technology to scale.

1. **Recruit** the best energy technology innovators

2. **Leverage** expert mentorship and world-class facilities at the national labs on a win-win basis

3. **Accelerate access to follow-on funding**

Position people and technology for market

https://www.energy.gov/eere/amo/lab-embedded-entrepreneurship-programs
Accelerate Progress to Market

Technology Idea

Stipend & Benefits

- A monthly stipend, health insurance, and travel funds allows innovators to focus on their technology & business full-time.

Access to National Lab Resources

CRADA* provides funds for use at the Labs, access to resources and connects Innovators with Lab staff.

Mentorship & Business Training

- Business & commercialization training, mentorship, and organized events lead to networking, community building, and improved outcomes.

Market

Private Investment

*CRADA – Cooperative research & development agreement
Program Success

LEEP Innovator Follow-on-Funding
Over $522M

- 96% success rate for companies continuing to operate after the program
- 12 Innovators have been recognized in Forbes’ 30 under 30
- 11+ companies are selling commercial products
Today’s Panel

LEEP Managers, Advanced Manufacturing Office, DOE

Joe Cresko
(Chief Engineer)

Paul Syers
(Technology Manager)
Vanadium replaced by a simple organic compound that functions as BOTH the negative fuel and positive electrolyte.

Expensive selective membrane replaced by a simple porous separator

NET RESULT:
More energy at lower cost

➢ Higher Voltage (2X)
➢ Multielectron capability (2X)

The Jolt Organic Redox Flow Battery
Milestones and Progress

ACTIVITIES

Launch
- Initial concept
- Lab data
- IP license

Technical Progress
- Lab space
- Material screening
- Modeling
- RFB prototype

Business Development
- CRI Program
- I-Corps
- Tech validation
- Build team

Commercialization
- Larger prototype
- Scale-up
- Field Trial
- Extended testing

FUNDING

- Seed funding $275k
- OE Orcelle Award
- Shell/NREL GCxN

砷 arsenic $1.1 M in non dilutive funding to date
Before Innovation Crossroads

2018

- High Voltage Electrolytes for ultracapacitors
- Reduce Cost & Size of ultracapacitors
- $400M Direct Electrolyte Sales
- $550k Non-Dilutive Grants
- 150+ Initial Prototypes

Value

2021

- Rapid & Auto Electrolyte Screening for ultracaps & lithium-ion batteries
- Reduce Time & Cost to develop application specific products
- $5B+ Initial Cell Market
- $3.7M Non-Dilutive Grants
- 3 Products Under Development

Tech

Funding

Progress

Innovation Crossroads provided us with:

- Extensive Technical Resources
- Commercialization Guidance
Energy Storage Demand

1 TWh Annually
By 2025
$100 Billion in Batteries

Market Drivers

- **RENEWABLES & GRID ESS**
 - **COST**
 - Global Deployment needed will cost trillions
 - **SAFETY**
 - Permitting barriers due to flammability

- **AUTOMOTIVE**
 - **COST**
 - 65% of EV cost derived from battery pack
 - **SIZE**
 - Low Range & Slow Charging

- **DEFENSE**
 - **SIZE**
 - Weight limitations & Low Range
 - **SAFETY**
 - Flammability is a vulnerability
Problem: Cost, Time, & Risk
Solution: ATLAS-SYSTEM

Atlas-Cells
- Spectator Material does not change behavior
- High Reproducibility
- Explicitly measure everything in a battery

Data Processing
- Calculates performance metrics
- Identifies point of failure

Pilot System Operating at Joint Institute for Advanced Materials
Rapid Materials Development

Advantages from Eonix ATLAS System

Rapid Materials Development

Pilot System developed at Oak Ridge National Lab

Scaled System at the Joint Institute for Advanced Materials

ATLAS is a productivity multiplier for energy storage materials research

Pilot System

- Long Term Cycling
- Post-Mortem Characterization
- PhD Labor

1 Chemistry $125,000

ATLAS

- Short Term Cycling
- In-Situ EC
- Semi-Auto

1 Chemistry $7,500

Result: Eonix can rapidly develop new material products that address the differentiated needs of the energy storage market **37X faster** than competitors.

Time & Cost to Understand a Novel Chemistry

<table>
<thead>
<tr>
<th>State of the Art</th>
<th>ATLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Months</td>
<td>8 Days</td>
</tr>
<tr>
<td>- Long Term Cycling</td>
<td>- Short Term Cycling</td>
</tr>
<tr>
<td>- Post-Mortem Characterization</td>
<td>- In-Situ EC</td>
</tr>
<tr>
<td>- PhD Labor</td>
<td>- Semi-Auto</td>
</tr>
<tr>
<td>1 Chemistry $125,000</td>
<td>1 Chemistry $7,500</td>
</tr>
</tbody>
</table>

ATLAS

- Long Term Cycling
- Post-Mortem Characterization
- PhD Labor

1 Chemistry $125,000

ATLAS

- Short Term Cycling
- In-Situ EC
- Semi-Auto

1 Chemistry $7,500

Result: Eonix can rapidly develop new material products that address the differentiated needs of the energy storage market **37X faster** than competitors.

ATLAS is a productivity multiplier for energy storage materials research

Pilot System developed at Oak Ridge National Lab

Scaled System at the Joint Institute for Advanced Materials
WHAT HAVE WE DONE WITH ATLAS?
Non-flammable Lithium Ion Battery

Opportunity

Grid storage deployment is expected to grow from 12 GWh (2018) to 158 GWh (2024) in six years.

Value

Problem

FDNY requires fire suppression system
AZ Temp ban on LiB after grid explosions
SK has had 23 grid fires

Solution: Carbonate Free Electrolyte

Plug & Play non-flammable electrolyte
Carbonates are required for longevity
Selected candidate has Melting point of 25 C

25% Of Cost

- Fire Suppression System
 - Increases CapEx
- Emergency Explosive Gas Ventilation System* (APS)
 - Increases CapEx
- HVAC or Liquid* Cooling System (APS)
 - Increases CapEx, OpEx, & LCOE
2020

Electrolyte Screening

- **21 Chemistries**

2021

1 Ah Cells

- Non-Flammable (F.P. >160°C, 10x higher)
- > 70°C Operation
- Plug n' Play with existing Electrodes & Form Factors

2022

Production Prototypes

- **18650 & 10Ah Cells**

2023

Stage 1: Module Level Demonstration

- **CELL** 52x Cells

2023

Stage 2: Rack Level Demonstration

- **MODULE** 8x Modules

2024

Stage 3: Pilot Project

- **RACK** 4x-32x Racks

2024

Grid Storage Pilot
Rapidly Designing Electrolytes

Contact at dderosa@eonixenergy.com

Collaborators - Strategic Partners - Chemical Suppliers – Battery Manufacturers
Any Questions?

Thank you!

Joe Cresko, U.S. Department of Energy joe.cresko@ee.doe.gov
Paul Syers, U.S. Department of Energy paul.syers@ee.doe.gov
John Carlisle, Argonne National Laboratory, Chain Reaction Innovations carlisle@anl.gov
Tom Guarr, Jolt Energy tom.guarr@jolt-energy.com
Dan Miller, Oak Ridge National Laboratory, Innovation Crossroads millerdw@ornl.gov
Don Derosa, Eonix Energy dderosa@eonixenergy.com
Rachel Slaybaugh, Lawrence Berkeley National Laboratory, Cyclotron Road slaybaugh@lbl.gov
David Bierman, Antora Energy david@antora.energy